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1. Introduction

This is the second in a sequence of reports that present results of studies of
electromagnetic properties of finite, three-dimensional spherical systems 11I*. Al-
though this particular geometry is an extremely simple idealization, many of the
results obtained in the course of the research are quite general. Indeed, they pro-
vide considerable insight into the electromagnetic characteristics of real systems
of much more complicated geometry and structure which do not readily lend
themselves to analytic resolution.

In the study presented here, we investigated one important effect of concentrically
enclosing a spherical lossless dielectric within an ideal conducting spherical
cavity. This system is clearly of intrinsic importance on its own. In addition, it
provides an opportunity to understand, by comparison with a previously reported
study I 11, how the effect of loading a spherical cavity with a dielectric sphere dif-
fers from imbedding a concentric spherical conductor in that cavity. Furthermore.
the studies of such systems of very simple geometry will subsequently serve as re-
liable reference points for studies of systems of successively increasing

complexity.

The electromagnetic property we focus on in this report is the set of resonant fre- N;
quencies of the dielectrically loaded conducting spherical cavity. The dependence
of these physical variables on size and dielectric strength will be presented. In

section 2 we briefly present the formal development for the eigenvalue problem of V.
the system. In a previous report III we gave a more complete formal develop-
ment. The details of the geometry are given in section 2 also. Transverse-electric

(TE) and transverse-magnetic (TM) modes (i.e., relative to the radial direction)
are separable and uncoupled for this system. Section 3 contains the resonances
for the TE modes of the system as a function of radius of the interior dielectric.

Effects of varying the dielectric strength for the eigenvalues of the TE modes are
included in this section. Corresponding results for the TM modes are given in
section 4. Finally, in section 5 we present a summary discussion of all the results.

'Id* ''5

References are listed at end of report. i,
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2. System Geometry and Formal Developments
-S

2.1 System Geometry
Figure 1 illustrates the geometry of the system undergoing investigation.
It consists of a simple spherical conductor of radius a containing a con-
centric lossless dielectric sphere of radius b and dielectric constant E2.

The remaining volume contains a lossless dielectric of dielectric constant
El. The relative dielectric strength is denoted by er' where

r = 2/I. (I)

We shall in this report consider only the case where the magnetic per-
meability is the same for both dielectrics; i.e., p, = 92"

Quantities related to the region between the outer boundary of the inner
dielectric sphere and the conductor will be denoted by the index 1, either
as a subscript or superscript. The variables related to the volume occupied
by the inner sphere will similarly be denoted by the index 2.

Figure 1. Schematic Concentric Z

of the conducting dielectric Conducting sphere
spherical cavity con- load sphere

taining a concentric
spherical dielectric. Arbitrary point

b within cavity

a

b y

/ ' " Cavity dielect ric o0
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2.2 Formal Derivation of TE Mode Eigenvalue Relation
The Debye potential for the TE mode is of the form

{Y . (0,O' ) n ( r) , for b :5r 5a

"nmf(r0=•( (2)
Ym(0,0) 0(n (r) , forO0!5r < b

and satisfies

V2 _ ,nm (r)=ofor b <r!<a (3a)

and

(V2 -2), 3 ,,(r) =0, for0r<b (3b)

where

Since the angular part is well-known, we shall only explicitly consider the %

radially dependent part of equation (2), which is taken in the form
on (y r)=An (yi r+8(')kn(y r ) , b, 1  r5a

On (5)
On (r 2r) =in(y2 r) O! 0r5 <b

where we have introduced the modified spherical Bessel functions in
equation (5). Note that the coefficient of (2 ) has been chosen as unity for
convenience. Applications of the boundary conditions of the fields at r =

a and r = b will then determine the coefficients A ) and B(' ) and establish
the eigenvalue relation as a function of a, b, El, and E2. The general ex-
pressions for the field components in terms of the Debye potential for the
TE modes are given by

E:,,n (r) =_0 (6a) ".

E.:mn (r)= . [rdnm(r)]  (6b)
~""' - sin 0 ~(b

Eo: n(r) =r a r(b)(r)! (6c) %--

9.,
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Hrm (r)= -] (6d)

He;.= Jr - .oW r ;-- Jr* (r)] (6e) .

and

H6 .; r) jn r (D r¢ (r)] (6f)" "?

• -'--5 - '.5

Each of these field components is of the form @

{m) (r) b -r :5a

11I():.m (r) = I 1():m (0, ) (2)n (7)
S () : , ( r ) ,0 < r < b

S

We then can separate variables and rewrite equations (6) as :Q

E,. (r) =O ( 8a)

E ')(r) , b < r!<a " '',

OV V

8b) r' -. '(0r0 (8b)

2)

andn

i,, (r)= o.n (0,4) 
.

" i ' (r) , Or<b

JIr- (r) b I r !5(7)

HoIJ (r) , 0r <

( , 1)(2)

I),: (r) , b<r<a

l ~~::2)::-. :d

:.( ) , b z<r _<a :':-:H e (r ) = E0., ',, (0 'O l,2) r < (8 c )"' " " "1E0: (r) ,0 ~

and 
""H-% 

,P
. h~ra. . -

IH~%(L),, 0 ,r

10 P

0
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% %"

fHo)(r) b < r a
H;,,.() (r) H6. (<) (8f)

Clearly we need only consider the radially dependent factor in all further

derivations in this report. Thus we shall write:

Er.n (r) - 0 (9a)

Een (r) = 2) (2) , (9b)0; n ( r)(2 (2(r) 0 0_<r < b

E.') (r) b <r < a
E).m, (r) ; 0r<a (90

"H (r)- (r) ,b < r <5a "-'- -
rHn

Hr:nm (r) = r(2 ) b (9d)
(r) 0 < r < b

He.)(r) , b<r5aHo;nm (r) =Ho;nm ((O,0) ()., (9e) - ]

H2;n (r) , 0<r<h_
and ' '

(I) .... -

IH:n(r) b<r a
[E(9f) (r) "'- O-) (9f)Ho:. (r = o:. (0¢)H () r !, < a ."'

E0.,(r) 0E,, (r) 0 !5<

OII r)= ;Ir)IW

'.
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WOI) F-711 d2  ()

Hr~n (r) (I r~~) i yr~(.rj Od)

(2) C 2  r " (rHron (r) = VI d- [yr (yr)]
YL 2 d( r) 7

[y, r r) %,
I-4(r =yr d (y, r) We A~~~y ~

rw

He,. (r) = E T2 I d() (1(e)

H(r - 2 1 d [y2r '(y2r)]"'r=y2r d(y2r)

1_[= r n (y2 r)] W',.tA

and....

%.

H. (r) = H. (r) .(lOf) ?

where we have introduced the notation.;

l- Ix¢4(x)l I x ( l"."--

Now let us explicitly consider applying the boundary conditions. At the
dielectric interface, both the tangential electric field and the tangential -..

magnetic field are continuous across at r = h. From equations (9b) and :

(e), we obtain then the pair of relations

/An in (yI h) + B,, k,(y I 1)) i= i(Y2h)  0 1I)"...4

and

4..
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A( i, i(yb)l +B. [y, bk.(y h)l'=ly2hi.(y2h)j (12)

This pair of equations is readily solved to give

AM--jb iY7'L(yjb)I k, Ii (YiI )
y_-.) ,(y2 b)" ,j bY k. (y, b)"

and

'2,, 1 ~ =-y~h Ii,,(y, b) ii(y 2 h)

where we have used the Wronskian relation to simplify the results. The
coefficients have thus been determined in terms of known quantities.

Next we apply the boundary condition at the conducting surface: namely,
the tangential electric field vanishes at r = a. This gives us

All i. +B' k. (y, a) = 0

Upon substituting into this relation from equations 13) and (14) for the
coefficients and rearranging, we obtain one form of the eigenvalue rela-

tion for the TE modes:

i,, (y2b) I"'(a,b) -fy 2hi,, (y2 b)J A()(ah) =0 (15)

This is the relation whose roots, yla, give the system TE eigenvalues. The

auxiliary functions introduced in equation (15) are defined as follows: %

A(! (a,b) i, (y a) k,1(1b) - i(y)k n(ya) (16)

% 11)(a.h) =i,, a)yhk,,(y, ) k,(y,,)l h ,.(y,) . 17)

In section 3 we shall continue with the considerations of the TE modes.

13
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2.3 Formal Derivation of TM Mode Eigenvalue Relation

For the TM modes, the Debye potential is of the form,

Y{ (,0) W, (r) ,for 0 <r <b

which satisfies the differential equation:

V 2 - I ...n (r) =0,for b < r <5 a 1a

and

(V 2 -2) ,(r) =0 . for 05r<a . (19b)

Once again we observe that the angular part is well-known. Hence we -

only explicitly display the radially dependent part. This is

(I) y, r) = CI )ti (1 r) + D' kp ( r) , for b < r -a
Wn (r) (20)

n (y2r) =i(y 2 r) , for < r'<h .

Again the coefficient of the inner Debye potential has been taken as unity
for convenience. Application of the boundary conditions for the fields at
the conductor and the dielectric interface will as before explicitly evaluate
the coefficient C( ) and D(' and generate the eigenvalue relation for the

TM modes.

V
The general formal expressions for the TM mode field components in

terms of the Debye potential W, (r) are

HrIpjn(r) 0 , (2 1b)

Ho:pm(r) = r , _)2b

14
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H . 1(r) (r r [rm(r)] (210

Er.,j (r) =2-) -2T,,,(r)I (21d)

! 1 oa2

Eo;pn(r) , r m(r) (21e)

1 1 a2
Eobnm (r) =-j rsn 1 [r nm (r)] (21f)

Again observe that each of the field components in equations (21) are of

the form

] ) ;n( r)  b <r! a
i !)n (r) = I 1)1,,m (,4) .,

(); (r) ,0- r < b

and just as we did for the TE components we rewrite equations (21) as

follows:

Hr;nm (r) = 0 (22a)

HO,,(r) , b < 0,4)) (22b)
lHO-,(r) , 0 : r !5 b

{ (r) ,b <r(22a
H°,;,,n (r) = H°;n,(,4) (22c)

H0 (r) , b<ra

Er) H m (0, .(22d)
Er;n (r) , r <E.),n (r) b < r <5 a &-;Ee22d(r ,.,cr.

( (r) r <
E0:,,,,.1(r) = E0:(0,4) ( (22e)E (r) ,0<r<b 

" .

15



and

(r) b<r aEO m (r) =EO;IM (0,0) 40-;) (22f)" €
4(22

E,;: (r) ,O r <b

Extracting the radially dependent part we have

Hr.n (r) =0 (23a)

. (r) = W, (y r) b < r <a ,.-
Ho) ( (r) = y (23b)

1Hon(r) ='Vn (ny2r) , 0<r <b

Ho. (r) = HO;n (r) (23c)

E(,. I r 1 r b ,

S I d(yr)2  [

E,.,, (r) =(23d)

P2 (22d
E ()= [d- - 1 r ,)( r)j , 05r<b

I .) 1 " 5- '
E(o, (r) = I,  1[yi r(,) (y, r)]  b <r < a ."

Eo;n (r) = (23e) "

r I;nt - 2 y2 r [y2r (2)(y, r) ] , 0 < r <b

Eo;n (r) Eo;n (r) (230
5-5-

Next we apply the boundary conditions. The tangential components of the
electric and magnetic fields are continuous across the dielectric interface
at r = b. Then from equations (23b) and (23d) we obtain, respectively, the
pair of simultaneous equations 0

eIl)

16
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and

ng , 1,, h I .' ' (Y 'h ) ! + , D n ,, I h "( ' l Y2 5
_ I I Y2b i.( I2b)1"

Solving this pair of equations we obtain, after some rearranging and using
the Wronskian. the coefficients

' I~ E 'i ,(y2 h) , "(YIh) (26)
n. = - - , , hhi, (y2h) I j bk (yib)I 

- ~ i i,(Y1 h) in a(Y2h) (7

At the conducting surface r = a, the tangential components of the electric
field vanish. This gives us the relation

C' -Iy a in(fya) +OD)f ly, (y, =0 . (28)
n~ A.,

If we substitute into this the expressions for the coefficients from equa-
tions (26) and (27), we obtain, after sone rearranging, one fonn of the
eigenvalue relation for the TM modes of the system: .4

£,in( 2b)T -1 )(a,b) +Iy2 bi(y 2 b)' 1)(b,a) =0 . (29)

In equation (29) we introduced the additional auxiliary function ., ,

T' n (a,0,) m-ITya i,,(yT ,')I y "1¥ kn, (y, b)1 3 .-
T~>lh) Y~ai1cya)I Iyilk,1 yihI '(30)

- IY;/ i (yih )l "y{g ik (y a )j " V

The TM eigenvalues were found by solving equation (29) for its roots ya..,
We shall continue the discussion of the TM modes in section 4.

17
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3. The TE Eigenvalues

3.1 Introduction
Before presenting the TE eigenvalues, we must first establish some
conventions.

We introduce the notation

R bla (31)

Using the identities

Y2 by2 b - y T a =" R Yj a , ''
)a'

and

b
Sb - R.'-.-

we rewrite equations (15) through (17) as follows:

in ( F- R y, a) ()(aRa) - R yl a i, (NFr R ya) A() (a,Ra) =0 (32) % %'-.

where

A(') (a,b)- A(' ) (aRa) = i(y, a)k.(R yj a) - i.(Ryj a)k.(y, a) , (33)

and

T, (a,b) = "1, (aRa) (

= i, (y, a) IRyi ak,(Ryj a) - k. (y, a) [Ryi a i, (R y a)l (34)

Clearly, for fixed values of cr and R we can consider yla as the variable
in equation (32) and solve for those values of the variable that satisfy
equation (32). These values we call the "eigenvalues" for the TE modes.
Since the dielectrics within the cavity are lossless and the outer cavity
wall is a perfect conductor, all the roots of equation (32) are purely im-

18
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aginary. Thus, the TE eigenvalue spectrum for each value of n will be a

doubly infinite discrete set of ordered real numbers, each of which we
denote by kO)a where k()(a) is a root of equation (32) for fixed n (by -,

2ip 2 np
allowing y, = -k np ), and

kM a < k,'. ) (a) for p < p', p and p'= 1, 2 ....

Further each value k )a is a function of the relative dielectric strength,__
e and of the ratio of inner dielectric radius to outer cavity radius, R:

k )a ~) (e ;R) a (35)

np ap

First we consider two limiting cases: OW

The inner dielectric has b - 0. In this limit the eigenvalues are exactly

the same as those for the well-known spherical cavity 121, filled
homogeneously with dielectric El. Thus, for each n the k0)a are found
from the roots of i, a) = 0.

The inner dielectric, E2, fills the entire cavity, so that b = a (or R = 1).
In this limit we find the eigenvalues y'a by merely taking those al-
ready obtained for the cavity filled with dielectric of strength E and

dividing by F. That is to say,

k ') (R -0) a = I /4 Fik(')(R-I a.
raP np

Clearly, no more effort is required to obtain the TE eigenvalues when the .,

inner dielectric sphere has zero radius than in the other limit when the in-

ner dielectric has expanded to fill the cavity completely.

We note that if Er > I (i.e., the inner dielectric constant exceeds the outer,
surrounding, dielectric constant), the eigenvalues, in general, shift
downward as the inner sphere fills the cavity.

This is of course to be expected. (However, it still remains to be seen
how the TE eigenvalues behave in between these limits.) In the situa-
tions where Er < I (i.e., the dielectric constant of the inner sphere is less
than that of the surrounding dielectric in the cavity), the reverse behavior

19
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is of course to be expected. That is, when the inner sphere fills the
cavity, the TE eigenvalues Y2,')a take on the values that are well-known

for the cavity with a homogeneous dielectric in its interior. As the inner

sphere shrinks in radius, the TE eigenvalues reduce to this latter set mul-
tiplied by the factor l/J-i> 1. Hence, we now observe that in the ab-

sence of the inner dielectric sphere, all the TE resonance frequencies are
shifted to lower values. (Again, we have yet to see the behavior in the in-

termediate region.)

We now proceed to examine the behavior of the TE eigenvalues as a

function of the radius of the concentric dielectric sphere in the cavity for

several representative choices of dielectric strength. Though other repre-
sentations can be construed, we choose to keep the relative dielectric
strength, E2/E,, fixed, and we solve equation (32) for the eigenvalues, y1a,
while varying the normalized inner radius, b/a. The solutions in this rep-

resentation group themselves naturally into families of curves in accor-

dance with the second subscript, p. We shall present the solutions so .

grouped into these families.

3.2 The TE Eigenvalues for Er = 3.00
The first detailed case we shall consider is that for which the inner

dielectric sphere has a dielectric constant of C2= 3.00e,. Note that F- is
assumed to be the dielectric constant in the cavity in the absence of the

concentric dielectric sphere. .

In figure 2 the results obtained from equation (32) for k ,) (R;E, =3.0) a

are shown plotted against R for the family p = 1 and n ranging from I to
5. Table 1 (a) contains numerical values for these eigenvalues. Examina-

tion of these kOl) (R;Er) a curves shows the following behavior betweennlI

the limiting cases discussed above. For a given value of the index n, the
eigenvalues at first decrease in value slowly as the normalized inner -.

sphere radius, R. grows. The greater the index n, the slower this decrease

in eigenvalue becomes and the larger the range in R over which this in-

itial behavior persists. Immediately following this characteristic initial

behavior with increasing radius b (or equivalently R), a speed-up in the

rate of change of k, a occurs. This increase in the rate at which the

eigenvalue decreases becomes more marked as n increases. There is a
clearly defined knee in the k, a eigenvalue trajectories for n > I marking

where the curve departs from the slowly varying to the quickly varying

20
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THE TE EIGENVALUES k (R; r)a

Figure 2. TE eigenvalues k,'1, (R ;c, = 3) a for the spherical cavity of radius a filled with dielectric E, inter-
nally loaded with a concentric dielectric sphere of radius b and strength E2 = MI.

behavior. For large n this knee becomes quite a sharp bend. Following
these noteworthy characteristics the k I)a trajectories show a slowing up
in the rate of decrease of the eigenvalues as the inner sphere continues to

grow. For large R values, corresponding to a high factor of filling of the
cavity by the inner dielectric sphere, we again observe a very slow
change in the eigenvalues as R grows further towards unity. As R
reaches unity, the eigenvalues reach their limiting values of l/,,34 times
their initial values. Clearly, three distinct regimes are evident from the
k(l (Rx r=3) a trajectories. These correspond to the presence of a small,
intermediate, or large concentric inner dielectric sphere.

The set of TE eigenvalue trajectories, k( (R:Er), raises two questions. %

First, why does the eigenvalue remain nearly constant for the higher n
values over such a substantial range of R? Second, why does it then

change so rapidly with increase in size of the dielectric sphere in the inte-
rior? Clearly this behavior will be even more pronounced for even higher
values of n. The answers to these questions can be found in an examina-

tion of the corresponding spatial distribution of the field components
within the dielectrically loaded cavity. This subject will be taken up in

21 .
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Table Ia. Numerical Values of the TE Eigenvalues k,, (R;F-, =3) a for '£

the Spherical Cavity Loaded Internally with a Dielectric Sphere €_

R-b /a n- 1 n-2 n=3 n-4 n-5 6,,

0.05 4.49338 5.76346 6.98793 8.18256 9.35581";-'

0.10 4.49254 6.76343 6.98793 8. 18256 9.35581 "-

0.20 4. 46441 6.75970 6.98749 8. 18251t 9. 35581 ,,.!_

0.30 4.27463 5.69606 6.97091 8. 17856 9. 35491 ':,

• .* ,.

0.40 3.83541 5.31497 6.74779 8.07928 9.31677

0.50 3.38457 4.66134 5.97362 7.30555 8.64409 ,558

0.60 3.04326 4.10949 6.19990 6.30710 7.42375
0.70 2.81017 3.71817 4.63497 5.56076 6.49309

0.80 2.66886 3.46968 4.26308 5.05552 5.84923

0.90 2.60509 3.34950 4.07203 4.78186 5.48385

0.95 2.59570 3.33051 4.03971 4.73248 5.41376

Table lb. Numerical Values of the TE Eigenvalues k' (R:e, = 3)a for

the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n-1 n=2 n=3 n=4 n-5

0.05 7.72486 9.09501 10.41712 11.70491 12.96653

0.10 7.71219 9.09434 10.41709 11.70491 12.96653

0.15 7.61736 9.08326 10.41601 11.70481 12.96652

0.20 7.26888 8.99890 10.40211 11.70273 12.96623

0.25 6.70702 8.61623 10.29108 11.67880 12.96135

0.30 6.25514 7.91051 9.74735 11.46473 12.90377

0.35 6.01878 7.32347 8.88154 10.59698 12.34333

0.40 5.94320 7.01957 8.24572 9.64212 11.17173

0.45 5.93663 6.93209 7.97131 9,08310 10.28875

0.50 5.90684 6.92584 7.92209 8.93074 9.96407

0.55 5.78584 6.87104 7.90644 8.92085 9.93401
0.60 5.58018 6.69032 7.76864 8.82638 9.87332 •

0.65 5.34200 6.42117 7.48287 8.53538 9.58448 ,',/
'a,.,.. **b

0.70 5.10996 6.13349 7.14235 8.14328 9.14047 '.,

0.80 4.72953 5.63503 6.52371 7.40152 8.27184

0.90 4.50832 5.32483 6.11855 6.89681 7.66396 ,

0.95 4.46713 5.26212 6.03067 6.78049 7.51630 0

22,a'.,•
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Table Ic. Numerical Values of the TE Eigenvalues k,, (R;e, =3)a for

the Spherical Cavity Loaded Internally with a Dielectric Sphere >'a

R-b/a n-1 n-2 n-3 n-4

0.05 10.90192 12.32290 13.69802 15.0397

0.10 10.82516 12.31732 13.69769 15.03965

0.15 10.26354 12.21370 13.68510 15.03826-,

0.20 9.43374 11.46032 13.48429 15.00451

0.25 9.15424 10.48578 12.33261 14.44791

0.30 9.13449 10.21737 11.43087 12.94811

0.35 9.01077 10.20009 11.29319 12.41148

0.40 8.61039 9.99714 11.24205 12.38336

0.45 8.14505 9.49576 10.84570 12.14966 . ,.
0. 50 7.82181 8.99353 10.23540 11.50694

0.55 7.70064 8.68985 9.75206 10.87014

0.60 7.69066 8.61488 9.54641 10.50728

0.65 7.60805 8.59006 9.52819 10.44599

0.70 7.38682 8.40977 9.39927 10.36375

0.75 7.10426 8.10593 9.08477 10.04735

0.80 6.82694 7.78215 8.71681 9.63658

0.90 6.41015 7.26823 8.10480 8.92541

0.95 6.31397 7.14057 7.94314 8.72761

0.99 6.29566 7.11489 7.90888 8.68359

0
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Table Id. Numerical Values of the TE Eigenvalues
k'," (R ;er, = 3) a for the Spherical Cavity Loaded
Internally with a Dielectric Sphere

R-b/a n-1 n-~2 n-3

0.05 14.05819 15.51439 16.92362
0.10 13.74719 15.48531 16-92143
0.15 12.59739 14.86023 16.82536
0.20 12.30726 13.57811 15.49753
0.25 12.23821 13.41956 14.58338
0.30 11.66648 13.23988 14.53831

0.35 11.04040 12.48532 14.04369

0.40 10.87308 11.92911 13.18152
0.45 10.82319 11.85081 12.84483

0.50 10.46800 11.69153 12.80069
0.55 9.97096 11.19225 12.39661

0.60 9.60650 10.68693 11.80285 .

0.65 9.49097 10.41708 11.38032

0.70 9.46447 10.38642 11.28030

0.75 9.26066 10.24452 11.19505
0.80 8.93346 9.90793 10.85978

0.90 8.32657 9.21190 10.07710 O

0.95 8.15809 9.00530 9.83100

0.99 8.12147 8.95783 9.77147

0
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detail in a forthcoming report giving the fields in the cavity for the TE
eigenmodes.

Continuing, we show in figure 3 the results obtained for the eigenvalues
0)n2 (R;cr = 3)a from equation (32). Table I(b) contains numerical val- ,
ues for these eigenvalues. Examination of figure 3 reveals that for a
given index value n the initial behavior of the eigenvalues is similar to
that of figure 2. That is, at first, as R increases, the eigenvalue only very
slowly decreases from the initial value when the inner sphere is not
present. This slow variation persists over a larger range of size of the in-
ner sphere as the index it increases. Now, however, for each value of i t
the k trajectory begins to change rapidly with R noticeably earlier

than the k1')a trajectory. For the higher values the k) a trajectories show e%

a faster variation with increasing R.

A new feature can be seen in the curves in figure 3. After the initial knee
in the curve, the eigenvalues again display a very slow decrease in value
with increasing inner sphere radius. As n increases, this behavior persists,,. M

for a decreasing range of R, after starting at a larger value of R for higher
n. Again, as R increases further, we observe another rapid decrease in
k. I a, which is more pronounced as n increases. This behavior gradually
tapers to a slow decrease in eigenvalue with R from about R = 0.8. thus
enabling the trajectories to go over to the known limiting values. Note
that figure 3 clearly indicates two knees in each of the kn2 a eigenvalue
trajectories. Roughly speaking, we can still distinguish between the three
regimes-small, intermediate, and large inner dielectric spheres. This
method of classification now seems less clear in some ways than earlier.

Figure 4 shows the eigenvalue trajectories for the modes k( I (R;E, = 3) a

,.: for n = 1,2,3,4. The corresponding numerical values of these eigenvalues
are given in table I(c). Upon examination of figure 4 we observe behav-
ior very similar to what we previously described for the k.2/ a in figure 3.

The new feature present in figure 4 is another knee in each of the trajec-
tories as an addition to a behavior similar to figure 3. Once again we in- 0

dicate that we shall be able to better understand the structure of the trajec-

tories for the k ' a eigenvalues only by resorting to an investigation of
-. the distribution of the field components for each eigenmode. This will be

done in a subsequent report.
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In figure 5 we present the final set of TE eigenvalues, for k,4 (R;e,,) a, to

be included in this report. Table Il(d) gives the corresponding numerical
values for these eigenvalues. Again we can readily note from examina- '"-,.

y I.''y ,y * -p'. , p u~ - ~j

tion of figure 5 that the trajectories for the k( demonstrate the same

kind of behavior with R. the size of the inner sphere, as the previous set.
Again that behavior is emphasized more strongly. Once again the
predominantly new feature appearing is the occurrence of an additional
knee in the curves.

At this stage of the report, we can readily conclude that a further increase
in the index p beyond 4 will result in the same behavior with R that we
have already seen occurring. Indeed we can, with reasonable accuracy, .
predict from the data in figures 2 through 4 the trajectories of the higher
order mode eigenvalues. With the aid of the tables we can extrapolate to
find their numerical values with some degree of accuracy.

3.3 The TE Eigenvalues for Er = 10.00
We consider next the results of concentrically loading the conducting
spherical cavity with a dielectric sphere of large relative dielectric

CONDUCTING SPiHERE Oi RADIUS
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constant, namely, 2 = I0.0) E. Figure 6 shows results calculated from 6
equation (32) for p = I and n ranging from I to 6. Table 2(a) contains 0.
numerical values for the k,,' (R;Fe = 10)a eigenvalues plotted in figure 6.-".
Inspection of figure 6 immediately reveals that the trajectories of the
eigenvalues behave much like those shown in figure 2 for p = I and E, =
3E,. Each trajectory still starts, for R << 1, at the same value, decreases
slowly at first with increasing R, then at an accelerated rate with further
increase in R. and gradually slows its rate of decrease as R approaches
unity. In this limit the value of the eigenvalues kt)n(R 1 [ E_ = 10)a are
given explicitly by the quantities

\FII k') (R = 0: r)a = /1 iFi k(')(R =0: r = 10)a.

We thus observe that for , = 10 the trajectories start for R << I at the

same values as for Er = 3, but decrease to values for R = I that are consid-
erably lower than for Er = 3. The net result is that, compared to the Er = 3
case, for Er = 10 the trajectories also display a very slow decrease for in-
creasing R initially. This behavior persists for a larger range of R as n in-
creases. A clearly defined knee is immediately evident in each eigen-

1.0 value trajectory, but appears earlier with R for er = 10 compared to what

0s CODCIG PEEO RADIUS a
~CAVITY DIELECTRIC E1

DCONCENTRIC DIELECTRIC SPHEREMoG RADIUS b 1.
DIELECTRIC CONSTANT E2= MOET % %

0 4 0

.1'
z '

=- 0.27'":
a . k'lila k 1'a k(3,' k(111 k51,a ('l

o.,

2 I 12 14 16 ,8%..%

THE TE EIGENVALUES k1(R: )

Figure 6. TEeigenvaluesk( ) (Rx , 10)a for the spherical cavity of radius a filled with dielectric E, inter-
nally loaded wvith a concentric dielectric sphere of radius b and strength Er= t0,.
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is observed in figure 2 for Fr = 3. The k", 10 11 values then ex-%
hibit a rapid decrease over a much larger range in R than is seen in figure
2 for E, = 3. This range is larger the larger the index n is. We note in fig-
ure 6 that this rate of decrease in k,') a gradually slows as R increases.
Finally, as R increases further, the rate at which the eigenvalues decrease
becomes nearly imperceptible. This latter behavior can be seen to persist
for a shorter range of R as the index n increases. Again we can discern
three quite distinct regirnes in the eigenvalue trajectories of figure 6,
namely those of a small inner sphere, an intermediate size inner sphere,

and a large size inner sphere.

Results obtained from equation (32) for p = 2 are displayed in figure 7
for n = I to n = 5. Again we note that these eigenvalue trajectories start
at R = 0 exactly where the corresponding trajectories for er = 3 start, but
they end, at R = 1, at values './341i0 times those for Er = 3. There is a
considerable amount of similarity in both sets. Examination of table
2(b), which gives numerical values for the k",,(R. ,= 10)a, will also
show the behavior of these eigenvalue trajectories.

" 09-
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Figure 7. 1'E eigenvatues k~ (R:E, = I0) a ror the spherical cavity or radius a filled with dielectric E, inter-
nally loaded with a concentric dielectric sphere of radius b and strength E2 = OE1 .
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Table 2a. Numerical Values of the TE Eigenvalues k,,1, (R;E, 10) a for the Spherical Cavity

Loaded Internally with a Dielectric Sphere

R-b/a n-1 n-2 n=3 n-4 n-5 n=6
0.05 4.4928 57634 6.9793 8.1856 93558 10.128

0.10 4.48885 5.76331 6.98793 8.18256 9.35581 10.51284
0.10 4.44885 5.760351 6.98773 8.18256 9.35581 10.51284

0.20 4.19332 5.72477 6.98410 8.18218 9.35577 10.51283

0.22 3.98261 5.65198 6.97555 8.18118 9.35565 10.51282

0.25 3.63193 5.30554 6.87027 8.16964 9.35428 10.51264

0.27 3.41190 4.98023 6.51613 7.98705 9.33367 10.51108

0.30 3.11966 4.52433 5.90075 7.22583 8.50653 9.75569

0.40 2.42757 3.44379 4.44930 5.42871 6.38311 7.31778

0.50 2.00997 2.79284 3.57706 4.35019 5.10919 5.86518

0.60 1.74458 2.37268 3.00662 3.63843 4.26405 4.88225

0.70 1.57502 2.09576 2.62051 3.14684 3.67224 4.19504S

0.80 1.47448 1.92305 2.36881 2.81429 3.25991 3.70540

0.90 1.42884 1.83849 2.23677 2.62865 3.01669 3.40233

0.95 1.42199 1.82475 2.21361 2.59360 2.96743 3.33677

0.99 1.42095 1.82258 2.20981 2.58760 2.95864 3.32456

Table 2b. Numerical Values of the TE Eigenvalues k") (R;Er, 10) a for the

Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n-2 n=3 n-4 n=6

0.01 7.72525 9.09501 10.41712 11.70491 12.96653

0.05 7.72328 9.09499 10.41712 11.70491 12.96653

0.10 7.60820 9.09059 10.41694 11.70490 12.96653

0.12 7.26468 9.07331 10.41605 11.70485 12.96653

0.15 6.28435 8.76617 10.40257 11.70402 12.96647 V 1 .

0.17 5.73488 7.97978 10.22983 11.69839 12.96609

0.19 5.35232 7.22448 9.32264 11.38203 12.96086

0.20 5.22407 6.90371 8.87423 10.83897 12.74741

0.22 5.07038 6.39234 8.09527 9.86524 11.60250

0.25 4.98980 6.03912 7.25222 8.70091 10.21430

0.27 4.97848 5.98749 7.09258 8.24502 9.47997

0.30 4.97672 5.97476 7.06823 8.20943 9.36395

0.35 4.90201 5.94765 7.05511 8.20232 9.36035

0.37 4.81017 5.88405 7.00951 8.17039 9.34000 e
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Table 2b. (cont'd) Numerical Values of the TE Eigenvalues k.1) (R;e,= 10)a for

the Spherical Cavity Loaded Internally with a Dielectric Sphere

R-b/a n-1 n-2 n-3 n-4 n-5

0.40 4.61003 5.68039 6.79150 7.92259 9.03553 '

0.50 3.86827 4.73848 5.60393 6.45592 7.28853

0.60 3.30421 4.01465 4.71619 5.40802 6.08893

0.70 2.90437 3.50044 4.08755 4.66730 5.24019 I

0.80 2.63149 3.14215 3.64355 4.13843 4.62817

0.90 2.47744 2.92854 3.36759 3.79849 4.22351

0.95 2.44803 2.88419 3.30604 3.71778 4.12201

0.99 2.44298 2.87617 3.29429 3.70157 4.10058

Table 2c. Numerical Values of the TE Eigenvalues k(" (R;e, = 10) a for the Spher-

ical Cavity Loaded Internally with a Dielectric Sphere
R=b/a n-I n-2 n-3 n-4 n-5

0 18%b

0.01 10.90412 12.32294 13.69802 15.03966 16.35471
0.05 10.89124 12.32272 13.69802 15.03966 16.35471_-:--"

0.07 10.79431 12.32009 13.69795 15.03966 16.35471'-

0.10 9.44433 12.24105 13.69526 15.03955 16.35470

0.12 8.52775 11.29151 13.66549 15.03840 16.35464 WO .

0.14 8.24860 9.93125 12.65103 15.01216 16.35385

0.15 8.21188 9.52894 11.84970 14.44290 16.35000

0.17 8.19600 9.31562 10.66391 12.77442 15.01515 p

0.19 8.19058 9.29530 10.49781 11.75659 13.44347

0.20 8.17245 9.29504 10.49196 11.73292 12.98646

0.22 8.04956 9.28069 10.49068 11.72901 12.97369 %. -..

0.25 7.55990 9.04977 10.42793 11.71673 12.97161

0.27 7.15361 8.63818 10.13765 11.59456 12.94049

0.30 6.60346 7.93799 9.32125 10.72313 12.11663

0.35 5.98979 7.02022 8.13281 9.27935 10.43389

0.39 5.81796 6.65264 7.57634 8.54937 9.55434

0.40 5.80722 6.61699 7.51797 8.48018 9.49624 "

0.45 5.78991 6.58340 7.46212 8.42822 9.46678 ". -"

0.48 5 70555 6.53506 7.42170 8.37745 9.38868

0.50 5.59773 6.43978 7.32087 8.24660 9.19462

0.60 4.87694 5.61702 6.35145 7.07965 7.79857

0.70 4.26651 4.89482 5.51222 6.12089 6.72171
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Table 2c. (cont'd) Numerical Values of the TE Eigenvalues k (R;E, = 10) a for
the Spherical Cavity Loaded Internally with a Dielectric Sphere .4

R-b/a n-1 n-2 n-3 n-4 n-5

0.80 3.81758 4.35949 4.89019 5.41234 5.92759

0.90 3.52889 4.00412 4.46778 4.92280 5.37109

0.95 3.46157 3.91555 4.35652 4.78772 5.21127 to
0.99 3.44831 3.89703 4.33194 4.75628 5.17222

Table 2d. Numerical Values of the TE Eigenvalues k(,,R4 (R;E, 10) a
for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R-b/a n-1 n-2 n-3 n-4

0.01 14.06618 15.51460 16.92362 18.30126

0.05 14.00421 15.51336 16.92360 18.30126

0.10 11.43270 13.72226 16.86368 18.29972
0.12 11.37161 12.58012 14.83143 18.01644

0.14 11.36031 12.52015 13.78803 15.53453

0.15 11.31392 12.51957 13.77198 15.07830

0.18 10.59372 12.36687 13.75764 15.06262

0.20 9.86784 11.72783 13.54654 15.03454

0.22 9.32661 10.90445 12.69866 14.54095
0.25 9.02345 10.06308 11.41212 12.96304

0.27 9.00406 9.89851 10.96020 12.18163

0.29 8.99128 9.87796 10.86449 11.94701

0.30 8.95668 9.87656 10.85977 11.93240

0.34 8.47016 9.61876 10.74045 11.87308

0.35 8.29660 9.45505 10.60593 11.77077

0.40 7.47526 8.51649 9.56963 10.62991
0.45 6.90635 7.76619 8.66383 9.57430 e.

0.49 6.73440 7.44741 8.22620 9.04498
0.50 6.72620 7.41735 8.17691 8.98707

0.55 6.68379 7.38512 8.12963 8.93470

0.57 6.59710 7.32354 8.07623 8.87086
0.60 6.39671 7.12858 7.86922 8.62393 0
0.70 5.63633 6.28050 6.91513 7.54230

0.80 5.02010 5.57962 6.12794 6.66742
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Table 2d. (cont'd) Numerical Values of the TE Eigenvalues k1 (Rc= 1)t

for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n-I n=2 n,3 n,4

0.90 4.59071 5.08176 5.56186 6.03332

0.95 4.47463 4.94037 5.39444 5.83934

0.99 4.44838 4.90650 5.35217 5.78794

.'a,

~..%

Table 2e. Numerical Values of the TE Eigenvalues
k.1 (R:F, = 10) 1 for the Spherical Cavity Loaded

Internally with a Dielectric Sphere

R=b/a n-I R=b/a n-1

0.01 17.22072 0.33 9.92883

0.03 17.21129 0.35 9.91307

0.04 17.16672 0.37 9.88331

0.05 16.90815 0.40 9.59286 ,

0.07 15.75413 0.45 8.78128

0.08 14.57621 0.50 8.08606

0.10 14.53178 0.52 7.88497

0.12 14.44114 0.54 7.75027

0.15 13.10915 0.55 7.71145

0.17 12.35053 0.60 7.66990

0.18 12.22112 0.62 7.60734 Or

0.20 12.17430 0.65 7.41396

0.22 12. 13745 0.70 6.99874

0.23 12.03661 0.80 6.23063

0.25 11.56566 0.90 5.66142

0.30 10.21668 0.95 5.49014

0.32 9.97392 0.99 5.44616
C'. "
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For 1 10, we can plainly see the presence of a second knee in the V %

curves. Now. however, we find all the characteristics are strongly accen- %

tuated. We see in figure 7 a very slow decrease in k") (R;, r= 10) a as R
increases from zero. This behavior persists for a larger range in R as n ,

increases. Now the first knee appears for e, = 10. earlier than for E, = 3.
Thus, for example, the knee appears for k"'(R: E, = l0)a at R = 0.2.
whereas for k( (R; E, = 3) a, it is at R - 0.3. The region immediately"52 , ,

following the first knee shows a much more rapid decrease as R increases -

for Er 10 than for E, = 3. taking place over a smaller range of R. As i.
increases, this behavior is accentuated further. As we can see in figure 7.
this is followed by a region of quite slow decrease in the eigenvalue as R
increases and then the appearance of a second knee which is sharper for

Lr = 10 than for Er = 3. Furthermore, this second knee occurs at lower R
values for the larger Er. Figure 7 shows that the second knee appears at

slightly higher values of R for larger values of n. After rounding the sec-
ond knee the eigenvalue decreases rapidly at first and then ever more
slowly thereafter as R increases. The larger the value of n. the more pro-
nounced this behavior is. Finally, as R approaches the limit unity the "

trajectories continue to decrease as R increases, but very slowly. The .

range of this latter behavior is smaller, but the rate of decrease is slower
with increasing value of the index n.

The existence of three regimes is again quite evident in figure 7. For the
initial range of R for which the eigenvalues k, a change very slowly as R
increases, we have a small interior sphere. For the upper range of R for
which the eigenvalues again change slowly with R, we have a large

dielectric sphere loading the cavity. The remainder of the range of R " -

from the onset of the first knee then corresponds to an intermediate inte-
rior dielectric sphere. For the intermediate sphere, as R incre;ases, a vari -
ety of behaviorial aspects are displayed by the system eigenvalues.

As expected. going from p = 2 to p = 3 causes a third knee to appear in
the eigenvalue trajectories for Er = 10. just as we saw happen for E, = 3.
Figure 8 shows k,' (R. Er, = 10)a for n = I to n = 5. Table 2(c) gives nu-
merical values for these eigenvalues. Again we observe a sharpening tip

of the characteristics of the trajectories. Starting at the empty cavity reso-
nances for R = 0, we note that as R increases the k,, I (R; Er 10) (1 values

decrease at a rate slower than for the k (R. e, = I0)a values, but for a
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shorter range of R now. The first knee occurs earlier for p 3, than for p ',-

=..

=2 and is followed by a sharper turn and a shorter region in which k,,, (It ?" -

changes more rapidly with R than we saw for k",la. The higher the value I-%

of the index n, the more this behavior is emphasized. Figure 94 shows a %' N.

second knee followed by a range in R over which a rapid decrease in ,,",i

,,,1) a occurs. This region ends in the third knee, after which we see in the .,

figure the usual behavior ats R increases. Notice that the trajectories ivn__I
figure 8 are flatter in the region between the first and second knees than ' .:,

in the region between the second and third knees. The higher the value ' .

A

of n, the more emphasized this is. Again there are three distinguishable%

regions. with the intermediate regime displaying richer variation with R "_, ,
than we saw in figure 7 for p = 2. f

In going from p = to p = 4. we observe another knee and shoulder ira-
pressed on the trajectories. The same pattern of chan es in the trae%

tores is evident in figure 9, which contains the eigeinvalues

figur th usa ehvoa nress Ntc tah taetoisi

k,, (R. E, = 10))i with the sharpening of the features over the p = 3 case
for c. = 1 and the p = 4 case for AEa 3t Table 2(d) contains numerical

values for the saw i of figure 9.
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The pattern of changes induced as the index p increases by unit%, is n)(M

evident. Thus. in figure 10( we showk onlV the it = I . p = 5 tra jectorv wAith
ain additional knee and shoulder and further emphasis of the detailed he--
hav'ior as R increases. Table 2(e) gives numerical values for the
k'j" (R: Er 10) a traj'ectorn' shown in figure 9.

It should be quite evident what one would expect the tra *jectories for
higher order eigenvalues to look like after examining the given sets in
detail. It is a relatively simple exercise to locate with good accuracy the
limiting values for R 1. for it = I and p greater than 5. Thus. for p' =5
+ q, say. k',,q (R. Er, 10) tz= (5 + q) + 0.45. This result can be dedu ed
from inspection of figures 6 through 10. Similar predictions for the other

4 values of n can be made in the same way, which means we can finld these
eigenvalues (approximately) wvithout directly resorting to solving equat-
tion (32).

To Summarize. some very intriuig characteristics are e~hihited by thle

eigenvalue trajectories. Nevertheless. \xe shall have to defer the explana-
tion of these to at Subsequent report giving the detailed behavior of thle ~
coirrespon1 ing spatial distrib-ution ot the field components in the

.. 6
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Figure 10. TF eigenvalues k",~ (RC = 10) a for the spherical cavity' of radius a filled with dielectric E, internally
luuided with a concentric dielectric sphere of radius h' and strength E2 = tOE1.P..

dielectric loaded cavity. We shall have to be content here with merely
noting the rich variety of interesting characteristics displayed by the
eigenvalue trajectories.

it

3.4 The TE Eigenv'alues for Er = 113
We have thus far examined effects on the eigenvalues induced by loading
the interior of the cavitv with a dielectric sphere whose dielectric constant
is larger than that of the cavity, i.e., Er = E-,/E1 > 1. For that situation we
con sidered representative values of Er that covered a substantial range. In
an attempt at completeness, we next consider effects on eigenvalues of
the spherical cavity that result when the cavity is concentrically loaded
with a dielectric sphere whose relative dielectric constant is less than
unity. Many of the essential characteristics can be seen in the results for
E, = E 2/E1 1/3. Therefore, we limit ourselves to considering only this
one case. Now, when R = 0. the eigenvalues y,(z are once again the same
as for the empty spherical cavity. But, in the other limit, as R approaches
unity. the eigenvalues are multiplied, rather than divided, by ' since

1/3.

37
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In the previous two cases of dielectric loading, we solved for the eigen-
value, y1a. knowing that we would be able to find the corresponding -
wavenumber in the denser dielectric region by means of the equation

72 Yi

If we wish to be consistent in defining our eigenvalUe as the one in the
region of smaller dielectric constant, we should be solving for y~a, rather
than ya. This formulation is usually desirable when the medium of
lesser dielectric strength is air. for example. But y2a is equivalent to yl
multiplied by the square root of the relative dielectric constant. Please

note that it is this "normalized" yla or. equivalently. kai. that is listed in
the tables and plotted in the figures which relate to this section. The
"true" values of ka are achieved by multiplying the tabled values by
#1/3. '", '

Some very interesting behavior manifests itself immediately in figure 11
which displays the eigenvalue trajectories k"t'(R. E, = 1/3) a for p = I
and n = I to n = 6. We clearlv observe that there is a considerable range

over R for which the eigenvalues increase with R, but at an astonishingly
slow rate. This behavior clearly becomes even more pronounced as 11 in-
creases. Thus, the total change for n = I as R goes from zero to 0.3 is
only about 0.1. whereas, for i = 6 as R goes from 0 to 0.55. the same to-
tal change is incurred. That is. for n = 6, about twice the range in R re-

sults in the same total change. Considered from the point of view of the
filling factor of the cavity, it is quite remarkable to note that substantial

filling of the cavity by the dielectric load hardly affects the eigenvalues

k,, a, and this effect persists to larger R as n increases. Thus, the higher
modes n > I appear to change even more reluctantly as the load increases
in size. 0

Following this range of slow variation the eigenvalue kj I a increases
more rapidly with R at first and then exhibits a moderately slow rate of
increase with R. Then for large R at about R = 0.9, the eigenvalue k1 a "'"

again resumes a very slow rate of increase as R increases to unity where
the load has expanded to homogeneously fill the cavity. These charac-
teristics are more enhanced as n increases. Indeed, as n increases a larger .
range of variation in k,,1 a can be seen in the intermediate region and a

38
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Figure 1I. TE eigenvalues k1., (R ;c, 1/3) a for the spherical cavity of radius a filled iith dielectric E inter-
nalh' loaded siith a concentric dielectric sphere of radius b and strength 6, = 113"

shorter range in the final slowly varying region as R approaches unity.
Table 3(a) contains numerical values for the k( 'ai eigenvalues of figure

Before continuing on to p 2. let us compare the eigenvalue trajectories
for p = 1, Er = 3, and p = I, Cr = 1/3; i.e., the curves in figures 2 and II.
Clearly they are all monotonic. For p = I and fixed n the trajectories for
F, = 1/3 display increasing values of the eigenvalues with increasing R.
whereas those for Er = 3 sho,, decreasing values as R increases. Both
sets suggest three size regimes for the inner dielectric sphere-small, in-
termediate, and large. The small inner sphere regime appears to cover a
larger range of sizes for E, 1/3 than for E,. 3. The opposite is true for
the large inner sphere regime. The intermediate regimes are about the
same. Now let us proceed to p -2 for er 1/3.

Figure 12 shows the p = 2 eigenvalue trajectories for t = I to it = 5 and
table 3(b) contains numerical values for the corresponding eigenvalues
k' n (R:E,. 1/3)a. For R = 0, they start out where expected, then show a
very slow increase with increasing R at first. This behavior persists for a
smaller range of R than we saw in figure I I for p = I for each value it.
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Table 3a. Numerical Values of the TE Eigenvalues k'o p

Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n-5 n=6

0.05 2.59428 3.32753 4.03448 4.72420 5.40158 6.06959 .%5

0.10 2.59443 3.32754 4.03448 4.72420 5.40158 6.06959

0.20 2.59872 3.32813 4.03456 4.72421 5.40158 6.06959

0.30 2.62210 3.33555 4.03660 4.72473 5.40170 6.06962

0.40 2.68788 3.37083 4.05340 4.73207 5.40471 6.07079

0.50 2.82307 3.47099 4.12148 4.77548 5.43102 6.08608

0.60 3.06229 3.68799 4.30495 4.92383 5.54699 6.17424

0.70 3.45372 4.10280 4.70920 5.30154 5.89075 6.48127

0.80 4.00972 4.83103 5.52816 6.15939 6.75615 7.33493

0.85 4.26971 5.28293 6.14535 6.89590 7.57135 8.19897 -,

0.90 4.42804 5.61867 6.71618 7.72475 8.64548 9.48357

0.95 4.48565 5.74678 6.95753 8.13244 9.27855 10.39934

0.99 4.49335 5.76333 6.98770 8.18219 9.35526 10.51206

Table 3b. Numerical Values of the TE Eigenvalues k (R;F = 1/3) a for the

Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n=5

0.05 4.46025 5.25101 6.01433 6.75783 7.48623

0.10 4.46228 5.25112 6.01433 6.75783 7.48623 .

0.20 4.50698 5.26123 6.01619 6.75813 7.48627 .

0.30 4.67880 5.34694 6.05175 6.77099 7.49046

0.40 6.02509 5.61047 6.22883 6.87885 7.55093

0.50 5.55227 6.12289 6.67413 7.24173 7.83216

0.60 6.13356 6.90351 7.48865 8.02226 8.54929

0.65 6.29287 7.31436 8.03667 8.61560 9.14461

0.70 6.32829 7.56756 8.56799 9.32160 9.92728

0.75 6.33922 7.61942 8.83647 9.91024 10.78773

0.80 6.45504 7.64411 8.86344 10.07269 11.23393

0.85 6.81283 7.88007 8.97735 10.11151 11.26856

0.90 7.37109 8.51928 9.58584 10.61248 11.63328

0.95 7.68393 9.02563 10.30954 11.54703 12.74418

0.99 7.72494 9.09451 10.41636 11.70383 12.96506
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Table 3c. Numerical Values of the TE Eigenvalues k,j (R e, = 1/3) a for the

Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n-3 n-4 n-5

0.05 6.29589 7.11466 7.90856 8.68315 9.44240

0.10 6.30579 7.11552 7.90861 8.68316 9.44240

0.20 6.46361 7.16979 7.92311 8.68637 9.44302

0.30 6.89422 7.46634 8.09436 8.77173 9.48058

0.40 7.55005 8.09855 8.62558 9.18115 9.77332

0.50 8.10967 8.99227 9.57439 10.08155 10.58411 ..- ',,.

0.55 8.15397 9.35481 10.15639 10.72741 11.22935

0.60 8.19431 9.45837 10.61068 11.43380 12.03077

0.65 8.45088 9.49536 10.71575 11.89237 12.83231

0.70 8.95862 9.82443 10.80233 11.94343 13.13739

0.75 9.42703 10.48337 11.35852 12.23209 13.22150

0.80 9.54680 10.89733 12.10373 13.13389 14.02286 0

0.85 9.58831 10.93208 12.25989 13.55397 14.79674

0.90 10.04004 11.23666 12.43592 13.64711 14.86768
0.95 10.78049 12.13873 13.43716 14.68489 15.88868 ,P,.

0.99 10.90325 12.32168 13.69629 15.03737 16.35175

*..%-.
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Table 3d. Numerical Values of the TE Eigenvalues k (R;E = 1/3) a

for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R-b/a n-1 n=2 n=3 n=4 I e

0.05 8. 12245 8.95740 9.77086 10.56624

0.10 8.15202 8.96111 9.77119 10.56626

0.20 8.49046 9.12083 9.83003 10.58388

0.30 9. 19020 9.71212 10.25741 10.85562

0.40 9.90277 10.66974 11.19390 11.68674

0.45 9.97521 11.12443 11.80829 12.31948
0.50 1004684 11.28868 1236939 13.05365 "'

0.55 10.41778 11.34393 12.55668 13.66935

0.60 10.98816 11.77403 12.65503 13.79198

0.65 11.34156 12.45693 13.27072 14.06253

0.70 11.37485 12.75106 13.98707 14.95315

0.75 11.68947 12.82383 14.09741 15.39889

0.80 12.46143 13.52556 14.51208 15.56183

0.85 12.72179 14.12917 15.44163 16.63609

0.90 12.84194 14.19586 15.54383 16.87999

- 0.95 13.78510 15.12991 16.41936 17.66522

0.99 14.06432 15.51208 16.92034 18.29709
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At the upper limit of R, a short range of R is shown also for which the

eigenvalues increase very slowly with R. This range decreases very rap-
idly as n increases. The region between these two limits reveals the pres-

ence of an indentation towards lower ka values. The range in R covered
by this "dent" decreases with increasing values of n. It also produces an
intermediate region in which the rate of change of k() (R;e, = 1/3)a

changes from fast to slow to fast as R increases. Although the region of
slow variation covers a smaller range in R as n increases, it simul- : -v
taneously results in a much slower rate of change with R. -

Compared with the k( a trajectories for er = 3 in figure 3, where we note
that the eigenvalues are monotonic and decreasing with increasing R, the
eigenvalues for cr = 1/3 are monotonic and increasing with increasing R.
The curves of figure 12 for Er = 1/3 do not display the sharp characteris-
tics of those of figure 3 for Er - 3. They do, however, retain many of the

other features of the trajectories of figure 3.

Figure 13 displays the eigenvalue trajectories for p = 3 and for n = 1 to n

5. Numerical values for these k ) 1/3) a curves are given in
table 3(c). We shall first consider these curves with regard to how they
vary as R and n vary. Next we compare them to the p = 2 curves. Then
we shall make some comparisons with the case er = 3, i.e., for the situa- "" -

tion in which the dielectrics in the cavity are interchanged. Initially, we % -

observe that the values start at the known values for a cavity homoge-
neously filled with dielectric. Since we have the stronger dielectric fill-
ing the cavity, these R = 0 values for each n are reduced by the factor

JiE = ",, as we discussed earlier. As R increases, the eigenvalue for n = -

I very slowly increases with R up to about R = 0. 1. Further increase in R

causes the eigenvalue to increase at a more rapid rate until about R = 0.5,
where again it dramatically slows its rate of increase until R has increased
to about R = 0.6. This is followed again by a more rapid increase in .. -

13(R'e- = 1/3) a with R and a tapering off from this rate of increase with
further increase in R, starting at about R = 0.7. We observe that over ap-
proximately the range 0.5 < R < 0.7 there is present in the k(1 a trajectory 0

an indentation.
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Immediately beyond this range in R. we can clearly see another identa-
tion over which the same sort of behavior in ka is clearly visible. Just
after this second indentation in the trajectory there is a rapid return, as R
approaches unity, to the limiting eigenvalue for the cavity homoge-
neouslv filled with dielectric.

AN ke let n increase., the slowness of the very early increase in ,,a as R
increases from R = ( becomes even more pronounced and persists for a-
larger range of R. Thus. at n = 5 this behavior is quite obvious in figure
13 up to about R = 0.3. Clearly. as n increases further, this would be .:.

even more enhanced for a larger range in R. Also., the rapid variation
with R that follows this initial behavior increases further, as n increases, "

over a slowly increasing range of R. This behavior as R increases is then
followed by a short range of R over which k', a increases with R. but
slowly. As n increases, this region of the trajectory becomes shorter until
at n = 5, it almost is undetectable in figure 13.

!

Following this behavior, we find that k,,,, a increases more rapidly with R.
through an indented region. We note in figure 13 as n increases this ., .
range of increase with R grows more rapid. Thereafter, we observe the .

effects of a second indentation in the trajectories and a repeat in the be-
havior of the k,,' a values as R increases through the range corresponding
to the identation up to the limit at R = 1.

The p = 3 case of figure 13 primarily differs from the p = 2 case of figure
12 by the addition of one more identation in the trajectories and the resul- -

tant characteristics. If we compare the p = 3 case for c, = 1/3 of figure 13 " %
with the p = 3 case for Er = 3 of figure 8, we observe the former is e,

monotonically increasing with R. whereas the latter is monotonically
decreasing as R increases. The k,, (R;E, = 1/3)a curves are considerably
smoother than the kl,'1(R.E, = 3)a curves, although both have the same
number of indentations in the same sense relative to ka. Thus, inter-
changing the dielectrics in the cavity results in some very remarkable
differences in the corresponding eigenvalue trajectories.

The trends in the TE eigenvalue trajectories as p is increased further are .

now clearly apparent. We see in figure 14 pretty much what we now ex-
pect to for p= 4. This is also evident in table 3(d) for the
krn4 (Rx;c 1/3)a numerical values. Clearly, another indentation, the
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third one now, is present in the k,' a trajectories, and the expected behav-
ior is exhibited over the consecutive ranges of R as we go from R = 0 to
R = i. "'-bP

We have just completed examining a large number of sets of TE
k.' (R.,)a trajectories for each value of p and for a substantial range of
relative dielectric strength E,. Next, we proceed to consideration of the
corresponding sets of TM eigenvalues.
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4. The Transverse Magnetic (TM) Eigenvalues

4.1 Introduction

Just as we did in section 3.1 earlier for the TE eigenvalues. we now intro- .V

duce some notation conventions for the TM eigenvalues. Using the iden- W

tities just preceding equation (32). we rewrite equations (291 and (3(0).

respectively, as follows: 
0.

Ei. ( -v( R y, ,,) (a.Ra) .36.
( 36 ) ..<

+ R a."

where

4 .. ,T'. Wai)- T,,. (a.Ra) ""

a y7,a i, (yt, a)I R,t k. (R y, i)1 yl a,, (R y, a) y, itk (y, (1)1 "-
(37)

.

For fixed values of R and c, we consider y7a the variable in equation (36)

(just as in the TE case). The values y1a that satisfy this equation are the %

eigenvalues for the TM modes. Again we note that since the dielectrics

within the cavity are fossless. and the outer cavity wall is a perfect conduc-

tor. all the roots of equation (36) are purely imaginary. Then, as for the

TE eigenvalues. for each value of the index n, the TM eigenvalue spec-

trum will be a doubly infinite discrete set of ordered real numbers, each of

which we denote by k,,a where ik, a is a root of equation (36). For

fixed n we thus have ,,p a > k") a for'p >p where p.p 1,23...

Each value of k, a is a function of the relative dielectric strength, Et, and

of R. the ratio of the radius of the inner dielectric radius b, to the cavity ra-

dius a. Thus k, a = k1,, (R.c,)a. For the TM case, we shall use the same 0
convention for the dielectrics as in Ole TE case at the limits R ( and R = .
I, or equivalently, h = 0 and h =a, which correspond. respectively. to the

absence of the inner dielectric sphere that loads the cavity, and to the inner

dielectric load sphere completely filling the cavity. Thus, we can immedi-

atelv obtain the TM eigenvalues from the well-known cavity eigenvalues .,

in these limits. As before, for E > 1. the eigenvalues k4' a for R = 0 are
the usual ones for the spherical ca\ ity, which varN, with R until R = I.

whereupon they are Just those for R 0 reduced bv the factor \',. For

47 ,17- ,..
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< I they start at R = 0 as the reduced nonialized values, and go over at R =
I to the unreduced values. The eigenvalues between these limits must be 1t
computed using equation (36) to obtain the entire picture. This has been .,,,
done. and we now proceed to consider the results so obtained for the same --

range of dielectric properties as in the TE case.

4.2 The TM Eigenvalues for er = 3.00
We shall first consider the details of the results obtained for c, = 3. Here
%4'e recall that the inner dielectric sphere of radius h has a dielectric con-
stant e, which is three time% that of the dielectric constant C, of the cavity
dielectric in the absence of the inner load.

In figure 15. %e find the TM eigenvalue trajectories k' 2) (R x, = 3) a for p,
I and with n going from n = I to n = X. Table 4(a) contains numerical

values for these eigenvalues"
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Figure 15. TM cigcn- ".
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Table 4a. Numerical Values of the TM Eigenvalues k'2' (R: x, 3) a for

the Spherical Cavity Loaded Internally with a Dielectric Sphere -*

R-b/a n-i n-2 n=3 n-4 n-5

0.05 2.74288 3.87023 4.97342 6.06195 7.14023

0.10 2.73706 3.87007 4.97342 6.06195 7.14023

0.20 2.69190 3.86492 4.97291 6.06190 7.14022

0.30 2.58539 3.83249 4.96545 6.06035 7.13991

0.40 2,43108 3.73200 4.92125 6.04385 7.13420

0.50 2.26204 3.54208 4.77545 5.95374 7.08509

0.55 2.17964 3.42198 4.64826 5.84425 7.00431

0.60 2.10058 3.29330 4.48936 5.67699 6.84888 "

0.65 2.02536 3.16109 4.30924 5.45979 6.60725

0.70 1.95399 3.02859 4.11815 5.21204 6.30396

0.80 1.82162 2.76782 3.72715 4.68780 5.64199

0.90 1.69988 2.50972 3.32898 4.15081 4.97012

0.95 1.64157 2.37657 3.11535 3.85667 4.59870 "

0.99 1.59555 2.26400 2.92417 3.58021 4.23397

Table 4a. (cont'd) Numerical Values of the TM .,,.
Eigenvalues k' 2 (RE, = 3) a for the Spherical
Cavity Loaded Internally with a Dielectric Sphere

R-b/a n-6 n-7 n-8

0.05 8.21084 9.27546 10.33524-,0

0.10 8.21084 9.27546 10.33524

0.20 8.21084 9.27546 10.33524

0.30 8.21078 9.27545 10.33524 .'

0.40 8.20888 9.27484 10.33504

0.50 8.18396 9.26270 10.32929

0.55 8.13056 9.22989 10.31005

0.60 8.00051 9.13009 10.23846

0.65 7.74811 8.88003 10.00150

0.70 7.38917 8.46338 9.52239 0

0.80 6.58395 7.50955 8.41636

0.90 5.78326 6.58770 7.38191

0.95 5.33969 6.07819 6.81306

0.99 4.88643 5.53609 6.18923 0
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Table 4b. Numerical Values of the TM Eigenvalues k'- (R:, = 3)a for the

Spherical Cavity Loaded Internally with a Dielectric Sphere

R b / n,, n=2 n 3 n -=4 n=5 ,,

0.05 6. 10886 7. 44298 8.72175 9. 96755 11.18898 p ,

0.10 6. 05385 7. 43963 8.72160 9. 96754 11.18898 ,

020 5.71699 7. 34454 8. 70488 9. 96504 11. 18864 -

0.30 5.33241 6.92317 8.49585 9.89331 11.16763

0.35 5.18844 6.62768 8.19692 9.71259 11.08859

0.40 5.05083 6.34388 7.79200 9.31550 10.81376

0.45 4.89193 6.08469 7.37505 8.76706 10.22011

0.50 4.70492 5.83982 7.00053 8.22779 9.51894

0.55 4.50438 5.60029 6.67709 7.77279 8.90497

0.60 4.30845 5.36815 6.39444 7.40906 8.42805 .

0.65 4.12893 5.15080 6.14206 7.11422 8.07612

0.70 3.97157 4.95453 5.91497 6.86154 7.80095

0.80 3.73125 4.63748 5.53332 6.42664 7.32360 ,,,

0.90 3.59128 4.42487 5.24643 6.06267 6.87761
0.95 3.55456 4.35349 5.13403 5.90342 6.66576

0.99 3.53556 4.30780 5.05449 5.78389 6.50075

Table 4c. Numerical Values of the TM Eigenvalues k' (R:x, = 3) a
for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4

0.05 9.28897 10.71235 12.06358 13.38012

0.10 9.10628 10.69302 12.06224 13.38005

0.15 8.77250 10.57386 12.04292 13.37761
0.20 8.48286 10.24119 11.92761 13.35179 0

0.25 8.24336 9.77384 11.54281 13.19856 --

0.30 7.90934 9.33457 10.89296 12.63995

0.35 7.49142 8.90388 10.27771 11.761,78

0.40 7.13785 8.47827 9.78701 11.07181

0.45 6.92502 8.13346 9.38185 10.61430

0.50 6.83769 7.91323 9.06659 10.25283

0.55 6.79459 7.79473 8.84867 9.95403

0.60 6.69222 7.69193 8.68765 9.71039
0.70 6.24923 7.25848 8.23221 9.18334
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Table 4c. (cont'd) Numerical Values of the TM Eigenvalues
n3 (R;E, = 3) a for the Spherical Cavity Loaded Internally

with a Dielectric Sphere

R-bIa n-I n-2 n-3 n-4

0.80 5.78179 6.71995 7.63368 8.52910

0.90 5.47244 6.33328 7.17548 8.00447 N.

0.95 5.40210 6.23206 7.04158 7.83653

0.99 5.38160 6.19214 6.97764 7.74468

Table 4d. Numerical Values of the TM Eigenvalues k',,4 (R x, = 3)a for Or

the Spherical Cavity Loaded Internally with a Dielectric Sphere '

R-b/a n-1 n-2 n-3 n-4

0.05 12.41947 13.91814 15.31350 16.67415 ,

0.10 12.04265 13.84993 15.30689 16.67365

0.15 11.62708 13.48050 15.21499 16.65837

0.20 11.24562 12.84136 14.72384 16.49682 %

0.25 10.61792 12.22503 13.81468 15.66128

0.30 10.15323 11.59708 13.07775 14.54327

0.35 10.01586 11.19032 12.52571 13.90196 ." • ,
,%" %

0.40 9.91200 11.02213 12.18209 13.44077 %%

0.45 9.56698 10.80230 11.94798 13.09572 ,' '?
. . %*' ,", .

0.50 9.10805 10.36373 11.56787 12.72224

0.55 8.75829 9.90507 11.06709 12.21408

0.60 8.61046 9.60926 10.65945 11.73258

0.70 8.45130 9.41560 10.34744 11.26968 ,

0.80 7.87959 8.84116 9.77566 10.68876 ." 
'

0.90 7.37383 8.25694 9.12024 9.96792

0.95 7.24289 8.09214 8.92173 9.73616 :', '

0.99 7.21087 8.04246 8.85120 9.64218
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It is important to notice, at the outset, that the TM eigenvalues k, I a are the
lowest-lying set for Er = 3. Furthermore, to cover the same frequency
range sho\-%n in figure 2 for the TE values k',,1 a. we require TM eigen-
values k' a to higher order (i.e.. to n = 7 compared with n = 5 for the TE %

range). This circumstance will be seen to hold true for higher j values.

We now make one comparison. i.e.. the behavior of the TM trajectories
relative to the TE trajectories as R increases from zero to unity or as the

dielectric load increases in size until it fills the cavit\ completely. Note
then that. in general, the TM eigenvalue trajectories are concave
do\% nward for the entire range of R, whereas, in the TE case. for p = I. the or

trajectories change over at about R = 0.5 from concave down to concave %
upward.

The TM eigenvalue trajectories kI a are monotonic, decreasing as R in-
creases. Initially. this is a quite slow decrease with increasing R. for a S

range of R that grows with increasing value of the order index n. Indeed.
we can observe in figure 15 that for n = I. this holds ip to about R = 0. I
and increases so that at nt = X it holds up to about R = 0.6. Clearly. this

range continues to grow with further increase in ,i. Following this initial
behavior the eigenvalues )1 decrease more rapidly with increasing R

and continue in this manner almost to R = I itself. Note in figure 15 that.
as n increases, the eigenvalue trajectory shows a more rapid rate of ON.

decrease as R increases. For the p = I case, we cannot clearly discern three % %

distinct regimes corresponding to a small-sized inner dielectric, an inter-
mediate one. and a large one.

Before continuing to higher p values, we pause to focus on a very remark-b(21

able feature exhibited in figure 15. Notice that for n = 8. we find that k, a
changes by less than one percent (compare table 4(a)), as R increases to R .
= 0.6. This tells us that we have an inner dielectric sphere whose radius

can vary from zero to 0.6 times the radius of the entire cavity, with very
little change in the eigenvalue, k<.] a. A small increase in the size of the in-

ner sphere from this point on, then. causes a rather substantial increase in
the eigenvalue. To understand this interesting property requires a detailed
study of the corresponding spatial distributions of' the field components.
Ve defer this discussion to a subsequent repo -t.
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Next consider the results for p 2 shown in figure 16, where k1,,(- a is %

plotted for n = I to n = 5. Table 4(b) gives numerical values for these1)'"  3 a-
eigenvalues. Another quite notable feature shows up. The k,'I (R:r 3)a
trajectories very closely resemble the TE trajectories for p = 1

,k ' 1 (R:cr = 3) a. The TM curves seem merely to be shifted to higher val-
ies in yta than the TE curves.

For p = 2. the TM curves are still monotonically decreasing as R increases

and display the now familiar feature of a single knee in each curve, Un- .,

like the p = I family, we note that once again three size regimes are sug-

gested for the load sphere. :-
2% %"

or

We show in figure 17 the TM eigenvalue trajectories for p = 3 where i,
goes from n = I to i = 4. Numerical values for these k'(R .:C 3) a are
given in table 4(c). Comparison of figure 17 and figure 3 for the TE
eigenvalues for p = 2. i.e., k( (R;:E = 3) a. show that the corresponding
traiectories are quite similar. They are not as much alike as we just noted S

10 CONDUCTING SPHERE OF RADIUS a

a CAVITY DIELECTRIC E,~

0.9
\ ..21 / r--CONCENTRIC DIELECTRIC SPHIi E .

RADIUS b
0.8 - k( DIELECTRIC CONSTANT C2 = 3

-, 12-

k22,
k2)

o .1 _ 2_ :-. -'.:-

2 68106 4,".'."

" ." k52a

04 . .e'

k2'2

s 2.'., .,

0 02 0

o 0 _

2 46 R11?14

THE TM EIGEN VALUES k 2hRAf

Figure 16. '[NI eigenialues k~ (R :E. = 3) a for the spherical ca% it% of radius a filled %'itl dielectric IF inter-

nailly loaded i ith a concentric dielectric sphere of* radius 1) and strength f 2 =EI

0
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* for the TM p 2 and TE p I trajectories. There are two knees present in

each set. The TM eigenvalues k,,2 a show smaller ranges in R, for which -6

we have a very slow decrease in yla with increasing R, than we found for

the TE case of k Ia. The TM trajectories then reveal a succeeding range £0P
(,2)

over which kI a decreases more rapidly as R increases, with the rate in-

creasing with n. This rate of variation with R is much slower than we ob- -

served in figure 3 for the TE trajectories for k", a. The next range in R

shows that k. a changes slowly with increasing R, but not nearly as

slowly as the TE trajectories did for k' a. For the remainder of the rangeb(2) %II),' 'd

of R. both k., a and k,2a behave about the same. The TM trajectories,

k2 (R.,, = 3) a, still can be thought of as displaying three distinctly sized
regimes for the size of the loading dielectric sphere.

Figure 18 gives the calculated set of TM eigenvalue trajectories for p = 4.

Here we show results for n = I to n = 4. Numerical values of

k,24 (R , = 3) a are presented in table 4(d). The same trend we saw for the S

TM p = 3 and TE p = 2 eigenvalues continues here. As anticipated, an -,-"

1.0 -CONDUCTING SPHERE OF RADIUS a

2" CAVITY DIELECTRIC E,*. I 0.9 -- '% '

0-- k .. ICOHCENTRIC DIELECTRIC SPHERE
0, (2 RADIUSb

233 DIELECTRIC CONSTANT E2 = 3L1  ".,- I

k3 43 %

0.6- %

0.4 -

S 0,2

,22z

0 2 4 6 8 10 12 14 16 18 .,-

THE TM EIGENVALUES k(n3 (R )

Figure 17. TN' eigenalues k,', (R;-"E = 3)a for the spherical caity of radius a illed m ith dielectric C inter-

nally loaded with a concentric dielectric sphere of radius h and strength C = 3C1 " p. -
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2Figure 18. 'M eigen;alues k4 ,,,QR. = 3)a for the spherical cavity of radius a filled with dielectric E, inter-
nally loaded with a concentric dielectric sphere of radius b and strength E2 = 3E,.

additional knee appears in the curves for the k 2) a. The k12) a and k" a

eigenvalue trajectories again are quite similar, with the TM trajectories
showing much less pronounced emphasis of the features over the succes-

sive ranges of R. Of course, the TM eigenvalue trajectories for k( a are at
larger ka values than the TE trajectories for k"3 a.

4.3 The TM Eigenvalues for er =10.00

We will now consider the TM eigenvalues for the inner sphere of a larger

dielectric constant of E= IF 1. First we examine the results obtained
from equation (36) for p = I and n = I to n = 8. These results are the

trajectories plotted in figure 19 and whose numerical values of
k,2, (R;E = 10)a are given in table 5(a). Again we begin by pointing out
that for all R, the TM eigenvalues k (R:E, 10) a lie lower than the TE
eigenvalue kt111 (R:.E = 10) a. S

In fact, the TM k(n2 ) a are the lowest-lying eigenvalues for ET = 10. This can
be seen by simply comparing the curves of figures 6 and 19.
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Figure 19. 'I'M (igenvalues (R; - 10)a for the spherical cavity of radius a filled with dielectric inter-
nally loaded with a concentric dielectric sphere of radius b and strength e2 = O0",.

We have a rather involved situation, in which there are a fairly large num-
ber of parameters in relation to which the different eigenvalues can he
compared, i.e., TM compared with TE, Er = 10 relative to c = 3. and, for
given Er, the TM eigenvalues for given it can be compared for different p
values, or for different it values all other parameters kept fixed. In spite of
this complexity we shall try to carry through the comparisons where they
appear significant.

Continuing, we compare the k (R:E, = 10) a trajectories of figure 19 withC ot inu ng k(e co p re t e
the I.j (R;, = 3)ai trajectories of figure 15. For n = 1, we see they both
begin at the same value at R = 0. As R increases, they both decrease
slowly at first and then more rapidly, with k(') (R:E, = 10) a having its rate
of change somewhat higher, so that at R = 1, we have the ratio

k(2' (R=l;:E,=l)a ,
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Table 5a. Numerical Values of the TM Eigenvalues k,2'(R:E, 10 a,

for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 'P ' "

0.05 2.74214 3.87023 4.97342 6.06195 ;

0.10 2.73105 3.86993 4.97341 6.06195

0.20 2.64339 3.86052 4.97252 6.06187

0.30 2.44378 3.79690 4.95825 6.05896

0.35 2.31574 3.71345 4.92707 6.04950

0.375 2.24897 3.65122 4.89390 6.03630 -

0.40 2.18174 3.57298 4.83418 5.99852

0.45 2.04872 3.37092 4.54925 5.53510

0.50 1.92058 3.13335 4.14872 4.99242 4",

0.60 1.68455 2.67539 3.47315 4.16142 ,.,,

0.70 1.47479 2.29613 2.96820 3.55954

0.80 1.28336 1.97686 2.56689 3.09291

0.90 1.09462 1.67147 2.19867 2.68187

0.925 1.04438 1.58649 2.09550 2.56951

0.95 0.99112 1.49106 1.97528 2.43705

0.975 0.93313 1.37652 1.81883 2.25449

0.99 0.89498 1.29160 1.68879 2.08593 0

Table 5a. (cont'd) Numerical Values of the TM Eigenvalues
k2 (R.E, = 10) a for the Spherical Cavity Loaded

Internally with a Dielectric Sphere,-

R=b/a n=5 n=6 n=7 n=8

0.05 7.14023 8.21084 9.27546 10.33524 . ,
0.10 7.14023 8.21084 9.27546 10.33524'
0.20 7.14022 8.21084 9.27546 10.33524

0.30 7.13965 8.21073 9.27544 10.33524

0.35 7.13700 8.21002 9.27526 10.33519

0.375 7.13233 8.20844 9.27472 10.33501

0.40 7.10384 8.13416 9.06122 9.96681

0.45 6.40689 7.23980 8.05514 8.85948

0.50 5.76783 6.51605 7.24965 7.97353

0.60 4.80582 5.42951 6.04110 6.64448

0.70 4.11466 4.65122 5.17663 5.69448 ,,

0.80 3.58569 4.06005 4.52305 4.97835

0.90 3.13486 3.56829 3.98876 4.40023

.- ., :~5.' ' '.,
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Table 5a. Numerical Values of the TM Eigenvalues

kn I (R;E, = 10) a for the Spherical Cavity Loaded
Internally with a Dielectric Sphere

R=b/a n=5 n-6 n-7 n-8

0.925 3.01614 3.44341 3.85718 4.26132 Iv

0.95 2.87747 3.30045 3.71001 4.10939

0.975 2.68072 3.09676 3.50308 3.90070

0.99 2.48199 2.87605 3.26741 3.65560

Table 5b. Numerical Values of the TM Eigenvalues k2 (R:E, = 10) a for the
Spherical Cavity Loaded Internally with a Dielectric Sphere

R-b/a n-1 n-2 n-3 n-4 n-5

0.05 6.10160 7.44289 8.72175 9.96755 11.18898

0.10 5.98960 7.43678 8.72148 9.96754 11.18898

0.15 5.69933 7.39369 8.71724 9.96717 11.18896

0.20 5.26552 7.20470 8.68543 9.96260 11.18834

0.225 5.02341 6.94597 8.61675 9.95149 11.18654

S0.23 4.97386 6.87218 8.58611 9.94672 11.18578

0.24 4.87396 6.70551 8.47633 9.92863 11.18322 ,:.O4.
0.25 4.77340 6.52213 8.27290 9.85558 11.17612

0.26 4.67267 6.33255 8.01299 9.58447 11.06590

0.30 4.27969 5.62072 7.00767 8.33831 9.61651

0.35 3.84258 4.92412 6.04519 7.15857 8.24588

0.39 3.54785 4.50996 5.47705 6.44758 7.41018 N7,

0.40 3.48151 4.42358 5.36332 6.30471 7.24398

0.41 3.41790 4.34339 5.26305 6.18938 7.16024

0.42 3.35693 4.26900 5.17761 6.11654 7.14239

0.45 3.18869 4.07635 5.00409 6.03773 7.12132 0
0.50 2.95091 3.82869 4.83290 5.94295 7.06296

0.53 2.82963 3.70623 4.73435 5.85696 6.98214

0.55 2.75633 3.63099 4.66392 5.78179 6.88751

0.60 2.59564 3.45729 4.47009 5.52795 6.48720 0

0.65 2.46170 3.29754 4.25768 5.21219 6.02879

0.70 2.34909 3.14768 4.03744 4.88694 5.60866

0.80 2.17202 2.86919 3.60328 4.28918 4.89480 .

0.90 2.03996 2.60861 3.18883 3.75198 4.28117

0.95 1.98493 2.48136 2.98009 3.47497 3.95896 S
0.99 1.94417 2.37939 2.80409 3.22212 3.63549

5-
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Table 5c. Numerical Values of the TM Eigenvalues k (R:C, 10) a for the
Spherical Cavity Loaded Internally with a Dielectric Sphere

R-b/a n-1 n-2 n-3 n-4 n-5

0.01 9.31621 10.71301 12.06359 13.38012 14.67012

0.05 9.26192 10.71183 12.06357 13.38012 14.67012

0.10 8.85483 10.67402 12.06114 13.37999 14.60711

0.12 8.55316 10.60966 12.05479 13.37946 14.67007

0.14 8.18958 10.45346 12.03635 13.37748 14.66988

0.15 7.98515 10.29326 12.01612 13.37513 14.66961

0.17 7.54113 9.67286 11.87103 13.36210 14.66807

0.18 7.31408 9.27880 11.53410 13.33712 14.66588

0.19 7.09348 8.89665 11.01897 13.09883 14.65905

0.20 6.88492 8.54797 10.50791 12.49429 14.40867

0.24 6.21966 7.62350 8.97068 10.45512 12.02533

0.25 6.09741 7.49808 8.81040 10.10740 11.55074

0.30 5.69648 7.06652 8.51199 9.88585 11.16333

0.32 5.60586 6,92199 8.37712 9.80510 11.12933

0.34 5.53769 6,78319 8.20939 9.66465 11.04770

0.35 5.50855 6.71509 8.11276 9.55969 10.95706

0.40 5.35337 6.36755 7.53202 8.73223 9.87265

0.45 5.08304 5.96893 6.91103 7.87507 8.82188

0.50 4.73153 5.54339 6.35694 7.17504 7.98944

0.55 4.38900 5.14612 5.89083 6.63380 7.39158

0.60 4.08514 4.79742 5.50468 6.23711 7.07480

0.65 3.82306 4.49806 5.18430 5.93650 6.83130

0.70 3.59977 4.24355 4.91516 5.67488 6.55191 .

0.80 3.25674 3.84884 4.48193 5.18153 5.91635

0.90 3.04264 3.57702 4.13069 4.70382 5.28066

0.95 2.98287 3.47554 3.97044 4.46826 4.96624

0.97 2.96632 3.43930 3.90782 4.37386 4.83778

0.99 2.95251 3.40466 3.84574 4.27893 4.70625

o '..-. V
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Table 5d. Numerical Values of the TM Eigenvalues k'2 (R:-. = 10) a

for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n-1 n-2 n-3 n=4

0.01 12.48495 13.92052 15.31356 16.67415 "

0.05 12.34864 13.91620 15.31346 16.67415

0.09 11.66566 13.83091 15.30744 16.67380

0.10 11.39210 13.75563 15.30059 16.67324 ",%

0.11 11.07169 13.61101 15.28721 16.67202

0.12 10.70612 13.30020 15.25973 16.66941

0.13 10.32192 12.73787 15.18674 16.66379

0.14 9.95744 12.08968 14.81789 16.64928 A.

0.15 9.64061 11.52244 13.99140 16.51772 e

0.16 9.38302 11.10856 13.18860 15.62409

0.18 9.03329 10.66961 12.17109 13.93284

0.20 8.83911 10.40660 11.97936 13.37331 .

0.22 8.72520 10. 17569 11.82085 13.31414

0.25 8.56776 9.83956 11.43985 13.10634

0.27 8.37583 9.58818 11.05765 12.71313

0.28 8.23946 9.44241 10.83503 12.41234

0.30 7.91356 9.10830 10.36626 11.75247

0.35 7.09866 8.22480 9.32598 10.41587

0.40 6.54310 7.56107 8.64055 9.79060

0.45 6.32088 7.20096 8.21410 9.33433

0.50 6.23596 7.00887 7.88291 8.83148

0.55 5.99439 6.73500 7.49604 8.28084

0.60 5.63298 6.34331 7.04389 7.74185

0.70 4.95085 5.58490 6.20868 6.83158

0.80 4.42896 4.99928 5.57003 6.15672

0.90 4.07959 4.59918 5.12427 5.66306

0.95 3.98594 4.47725 4.96790 5.46056

0.99 3.95318 4.41489 4.86623 5.30972

.3.'.
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Thus, all the k., (R;, 10) a and k., (Rx, - 3)a will have the same ratio
at R = I for each n.

_04

For n = i. both trajectories look pretty much alike for c, = 10 and E, = 3. .

However, we have already noted that as R increases the ,,j,'a values .,, J*
decrease faster for E, = l0 than for E = 3. There are some other dis-
similarities that arise when we compare figure 19 with figure 15. Clearly,
for er = 10. the trajectories decrease slowly with increasing R: the rate
decreases as n increases. This was also true of the eigenvalue trajectories
k(' (RC, = 3)a. However, at the knee we observe a much sharper turning
for the Er = 10 trajectories relative to those for er = 3. One new feature is
that as n increases, for cr = 10. we have a decreasing initial range of R over
which this very slow changing of k"' a occurs. In addition to this be-

havior, we observe that the k"(RxE, 10)a trajectories in figure 19, just
beyond the knee, are clearly concave upward. This behavior persists for a
large range of R and is immediately followed by a region of rapid decrease

in k a. as R goes to unity. In figure 15. there is only a hint of this con--121 o(21 .
cavity in the k, a trajectories for Er = 3. Note that the k", (Rx, = 10)a
trajectories somewhat resemble the k 1 (RC, =10)a trajectories (compare

fig. 6 and 19). except near R = i.

In summary, then, our considerations thus far have been to compare the
TM k,,- (R:x, = 10) a to the TE k'. (R:, = 10)a and also to compare the
TM k 2, (R , = 10)a to the TM k,,2 (R:E, 3)a. .

Next, we examine the characteristics of the TM eigenvalue trajectories for
(e2) -12) IW

2. k,,. (R;Fe, = 10)a. when n goes from I to 5. The ka curves are
shown in figure 20, and numerical values are given in table 5(b). Compar-
ing figure 20 with figure 7, we see that there are two knees in all the TE

trajectories k2a, whereas only for n > 4 do we see two clearly defined
knees in the TM eigenvalue curves for k'2) (REr = 10)a. For n > 4, the

TE and TM trajectories are similar, except for values of large R. For n <
,121 " ""

3, the k, 2 (Rx:, = l0)a trajectories resemble more closely the TE eigen-
value trajectories k,!11 (R:C, = 10)a. There now appears to be a transition

of some sort occurring in the inflection characteristics of the curves as we ....
vary n. S

,. .'% '

Going to higher order in p. we can follow the development of this transi-

-'N
tion. Thus. we consider next the p 3 TM eigenvalues k"'a. The
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Figure 20. TM eigenialues k.2(R:c . = IO)a fw the spherical cal'it, tof radius a illed mith dielectric E inter. -
nallv lmded m ith a concentric dielectric sphere of radius b and strength E 2 = iOE I'

trajectories are shown in figure 21 for n = I to n = 5. and in table 5(c) are
corresponding numerical values. We first compare the TE trajectories

n (R:, lO)a and the TM trajectories k,' (RxE = 10) a. All the TE
trajectories, as can be seen in figure 8. have increased the number of knees
to three for all values of n. Figure 21 reveals two well-defined knees oc-
curing in the TM trajectories for values of it < 4. The it = 5 TM trajectory.
k15 (R:E, = 10) a, shows just a vestige of a third knee, but at a rather large
value of R.

Perhaps as n increases much further, the k' 2)a will display a clearly de- • ]

fined third knee. If we compare the k,,la trajectories with the TE trajec-
tories k"") (R:x , = 10)a of figure 7, we observe that for n = 1, 2, and 3 the %

TM trajectories appear to more or less resemble the corresponding TE
trajectories. Considerable differences are obvious. Again, we appear to
find that a transition in the TM trajectory characteristics is taking place.

Comparing figure 17 for the k,(Rx, = 3)a with figure 21 for the. I
k 2 (R:, = 10) a, we see that for n = I and n = 2. the trajectories are
similar. For the larger values of it this is no longer the case. 7A
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F~igure 21. TNI cigenialues k (R:r. = IO)a for the spherical cavity or radius a tilled ith dielectric E1 inter- '

nally loaded iith a c'onc:entric dielec'tric sphere of" radius b and strength Ez IOE1. .,J ,'

For p =4. we find that the same trends continue for the TM trajectories -'''"

k' (R:Er = 10) a. Figure 22 shows these trajectories for n from n =I to ii ;.

-- 5. Table 5d) contains corresponding numerical values for the eigen-

values k,, (R:E , = 10) a. Let us start by first making the observation from ..- :

figure 22 that, for R from about 0.5 up to unity, all the TM trajectories . .,

manifest the more familiar behavior as R increases that we had become ac'-

customed to. Furthermore. there are three distinct knees in each curve. In-'-"

fact, all the familiar features are present in each trajectory. At this value of ..:.
p. it seems that the transitioning in the behavior of the eigenvalue trajec- '-"""

tories has pretty much been completed. Once again we notice upon con- )"-:.

paring figure 22 with figure 8 that for the same E~r the TM eigenvalues for ..

the index p are very similar to the TE eigenvalues belonging to the index , .
one lower in vae., ,

' % '

Although we have not calculated k{2 (R:E, = i0) a for p > 4, we afiticipate

that the trend will continue, and the familiar pattern of behavior will result. ,"- '

We have now seen TNI eigenvalues for a substantiall range of E'r > ] and -.,-.,,

0 0
Fh orr=4 espo ind eftat the strenscotin fo the cTM tajectories'.

** - .~.* 5.-:. f th e - %
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Figure 22. TNt eigenalues k -(R:c, IO)a for the spherical casilt or radius a filled %iith dielectric E, inter-
nally hoaded iiith a concentric diekrcrk sphere otf radius b and strength E 2 = IOE .

4.4 The TM Eigenvalues for Er = 1/3 .
The final TM eigenvalue trajectories we shall consider are those for which
we interchange the dielectric strengths within the cavity. We now have the
case of c, = 1/3. Figure 23 shows the first set of these eigenvalue trajlec-toietories corresponding top = I. namely, the k!21I (R:E, = 113)a for n = I to it
= 9. Table 6(a) contains corresponding numerical values.

Note first that for all values of R the TM eigenvalues k,' (R:x, = 1/3) a lie
lower than the lowest TE eigenvalues for Et = 1/3. which are thek j'1  (R ;E1, - 1/3) a.'w

Just as for the TE trajectories k(" (R:E, = 1/3) a (compare fig. I11). the TMKn I "'''

trajectories of figure 23. k',2'(R:E, 1/3)a. display the very' remark.ible
feature of increasing very slowly at first as R increases from R = 0. and
changing even more slow, with R as it increase,, for an increasing range 0
of R. Thus, for example. for it = 9. k' a changes by considerably less than
one percent as R changes from R = 0 to about R = 0.65. This is indeed a P
very noteworthy feature: the radius of the inner sphere increases to about
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Table 6a. Numerical Values of the TM Eigenvalues k' (R:c, 113) 1 for

the Spherical Cavity Loaded Intenally with a Dielectric Sphere

R-b/a n-I n-2 n-3 n-4 n-5

0.05 1.58442 2.23449 2.87141 3.49987 4.12241

0.10 1.58674 2.23456 2.87141 3.49987 4.12241

0.20 1.60414 2.23682 2.87165 3.49989 4.12241

0.30 1.64733 2.24998 2.87488 3.50060 4.12256

0.40 1.72508 2.28995 2.89205 3.50723 4.12494

0.50 1.84634 2.37795 2.94671 3.53842 4.14174

0.60 2.01985 2.54163 3.07754 3.63556 4.21074

0.70 2.24474 2.81645 3.34626 3.87599 4.41647

0.80 2.48256 3.21933 3.84044 4.40321 4.94112 .' .
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(2) JTable 6a. (cont'd) Numerical Values of the TM Eigenvalues k. I (R;E, = 1/3) a
for the Spherical Cavity Loaded Internally with a Dielectric Sphere S

R-b/a n-1 n-2 n-3 n-4 n-5

0.85 2.58072 3.43959 4.17773 4.82901 5.42371

0.90 2.65484 3.63064 4.51880 5.32948 6.07207

0.95 2.70661 3.77138 4.78887 5.76744 6.71068

0.99 2.73699 3.85265 4.94139 6.01218 7.06961

Table 6a. (cont'd) Numerical Values of the TM Eigenvalues
k 12 1 n .r 

'

x1 (R:e, = 1/3) a for the Spherical Cavity Loaded
Internally with a Dielectric Sphere
R=b/a n=6 n=7 n-8 n-9

0.05 4.74053 5.35519 5.96705 6.57660

0.10 4.74053 5.35519 5.96705 6.57660

0.20 4.74053 5.35519 5.96705 6.57660

0.30 4.74056 5.35520 5.96706 6.57660
0.40 4.74138 5.35547 5.96714 6.57663
0.50 4.75004 5.35979 5.96924 6.57763

0.60 4.79751 5.39163 5.99017 6.59115 5
0.70 4.96892 5.53187 6.10334 6.68145
0.80 5.47133 6.00201 6.53679 7.07704
0.85 5.98466 6.52711 7.06061 7.59089

0.90 6.75734 7.39678 8.00117 8.57980
0.95 7.62019 8.49677 9.34098 10.15346
0.99 8.11636 9.15419 10.18427 11.20746

.5-:

Table 6b. Numerical Values of the TM Eigenvalues k(2 (R, 1/3) a for the
Spherical Cavity Loaded Internally with a Dielectric Sphere

R-b/a n-1 n=2 n=3 n-4 n-5
0.05 3.53464 4.29732 5.03551 5.75477 6.45996
0.10 3.55430 4.29879 5.03558 5.75477 6.45996

0.20 3.67302 4.33247 5.04234 5.75588 6.46012 'U

0.30 3.89707 4.46871 5.10415 5.77899 6.46766
0.40 4.19283 4.74932 5.30765 5.90625 6.53899

0.50 4.46870 5.16215 5.71318 6.24962 6.80624
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Table 6b. (cont'd) Numerical Values of the TM Eigenvalues k, (R;E, 1/3) a

for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R-b/a n-1 n-2 n-3 n-4 n-5

0.60 4.61418 5.58355 6.30254 6.88120 7.41095

0.70 4.74989 5.83512 6.83170 7.67987 8.38242 V,'

0.75 4.91025 5.96067 7.00539 7.98584 8.86366

0.80 5.18611 6.18401 7.20685 8.22912 9.22090

0.85 5.57252 6.58177 7.57069 8.56728 9.57072

0.90 5.92529 7.08509 8.16141 9.18788 10.18974

0.95 6.08487 7.37546 8.60637 9.79266 10.94311

0.99 6.11428 7.43672 8.71029 9.94994 11.16424

Table 6L. Numerical Values of the TM Eigenvalues
k,2) (Rxr, = 1/3) a for the Spherical Cavity Loaded

Internally with a Dielectric Sphere

R=b/a n=6 n=7 n=8

0.05 7.15422 7.83968 8.51786

0.10 7.15422 7.83968 8.51786

0.20 7.15424 7.83968 8.51786

0.30 7.15647 7.84029 8.51802

0.40 7.19311 7.85784 8.52595

0.50 7.38866 7.99383 8.61649

0.60 7.93396 8.46664 9.01445

0.70 8.98304 9.52724 10.04568

0.75 9.62647 10.28862 10.87838

0.80 10.15707 11.01921 11.79863

0.85 10.57054 11.55457 12.51114

0.90 11.18270 12.17409 13.16565

0.95 12.06366 13.15887 14.23260

0.99 12.35869 13.53702 14.70191

Table 6c. (cont'd) Numerical Values of the TM Eigenvalues
k'n') (RcE, = 1/3) a for the Spherical Cavity Loaded Internally
with a Dielectric Sphere

R-b/a n=1 n=2 n=3 n=4

0.05 6.38931 6.18546 6.96492 7.72502

0.10 5.44748 6.19321 6.96554 7.72506

0.20 5.72571 6.32290 7.00705 7.73533
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~~~Table 6c,.. (cont'd) Numerical Values of the TM Eigenvalues %,.,,
S .._ .

k, 2 (R. = 1/3) a for the Spherical Cavity Loaded Internally -6

with a Dielectric Sphere

R=b/a n=1 n-2 n-3 n-4

" 0.30 6.11831 6.68514 7.24937 7.86803 * "

0.40 6.40685 7.20440 7.77256 8.30556

0.45 6.47571 7.44291 8.11120 8.65427

0.50 6.56969 7.61158 8.44730 9.06910

0.55 6.76217 7.74247 8.71475 9.49613

0.60 7.08112 7.94254 8.91417 9.84700

0.65 7.48305 8.30227 9.17317 10.11814

0.70 7.81542 8.79397 9.62997 10.48509

0.75 7.93460 9.17657 10.21325 11.10187 v
0.80 7.96052 9.28267 10.53328 11.67875

,,'-

0.85 8.14174 9.37617 10.61980 11.85040

" 0.90 8.71535 9.87300 11.00993 12.14933

0.95 9.23482 10.57775 11.86018 13.09449

: 0.99 9.31459 10.70821 12.05511 13.36718

Table 6c. (cont'd) Numerical Values of the TM
Eigenvalues k,,) (R; x 1/3) a for the Spherical _-_

Cavity Loaded Internally with a Dielectric Sphere
R=b/a n=5 n--6 n=7

0.05 8.46980 9.20221 9.92439

0.10 8.46980 9.20221 9.92439

- 0.20 8.47191 9.20259 9.92446

0.30 8.53397 9.22811 9.93390

• 0.40 8.86157 9.45259 10.07624

0.45 9.17901 9.72119 10.29060 •

0.50 9.60272 10.11856 10.64437

. 0.55 10.11024 10.64454 11.15398

0.60 10.62833 11.26444 11.81449

0.65 11.04319 11.86359 12.55689

0.70 11.39681 12.32197 13.19962 0
0.75 11.94870 12.81932 13.72198

0.80 12.70426 13.63031 14.50499

0.85 13.05176 14.21104 15.31727

0.90 13.29621 14.44773 15.59905

0.95 14.28938 15.45194 16.58848
0.99 14.65198 15.91469 17.15903

6S
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Table 6d. Numerical Values of the TM Eigenvalues k12) (R;F- = 13) a for the Spherical Cavity
Loaded Internally with a Dielectric Sphere

R=b/a n=1 n-2 n=3 n=4 n-6 n=6

0.05 7.23212 8.03807 8.84132 9.62683 10.39723 11.15508

0.10 7.34737 8.06208 8.84414 9.62706 10.39725 11.15508

0.0 7708 8.35000 8.97442 9.67251 10.41008 11.15814

0.30 8.20645 8.93072 9.47653 10.02946 10.62925 11.27669

*0.35 8.29921 9.22891 9.84606 10.37672 10.91752 11.49413

0.40 8. 42530 9. 44257 10.2333 1 10. 81339 11. 33429 11. 85969

0.45 8.69580 9.60117 10.55160 11.28459 11.85562 12.37088

0.50 9.10309 9.86534 10.78236 11.68733 12.41425 12.99682

0.55 9.52710 10.31643 11.09718 11.99178 12.88249 13.64077

0.60 9.74453 10.83041 11.63100 12.40714 13.26524 14.15221

*0.65 9.78081 11.09210 12.20129 13.06583 13.84316 14.65510

0.70 10.00693 11.16375 12.41521 13.59417 14.60022 15.45226

0.75 10.61125 11.56821 12.60217 13.74771 14.93253 16.07729

0.80 11.08410 12.30813 13.35163 14.31296 15.29773 16.34951 4

%0.85 11.14081 12.53845 13.87439 15.13166 16.29569 17.36492 4

0.90 11.41012 12.69611 13.98595 15.27241 16.54870 17.80976

0.95 12.29011 13.63758 14.92764 16.17285 17,38395 18.57040

0.99 12.48354 13.91571 15.30558 16.66232 17.99221 19.29977

%
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2/3 of the cavity radius with almost no change in the eigenvalue of the sys-
tern. As is to be expected, as R increases beyond this range, k.1 a in- %,
creases more rapidly with R. This rate of increase is amplified further with
increasing n. Although this is quite similar to the behavior of the TE

eigenvalues 1 (R:E, = 1/3) a as R becomes nearly unity. the two sets of
trajectories display deviant behavior. Whereas the k'I) a slow up abruptly
for the upper range of R, the k 2, a appear to continue smoothly and
gradually.

Increasing p to 2, we obtain from equation (36) the TM eigenvalues

k,, (R ,E, = 1/3) a, whose trajectories for each value of the index n are
shown in figure 24, where n goes from n = I to n = 9. Corresponding nu-
merical values are given in table 6(b). Comparison of the TM trajectories
of figure 24 with those of the k121 a in figure 23 reveals that for p = 2 a dent
appears in each curve. The dent appears in the midrange of R for ii = 1.
As n iacreases, the range of R decreases over which the dent is present.
Furthermore. the dent moves to higher R values: that is, it is present for
larger inner spheres, as n increases. Finally, we observe in figure 24. at

the higher values of it, the dent in the trajectories k,a seems to be wash-
ing out. Again comparing the eigenvalue trajectories in figure 24 with
those in figure 23 we see that prior to the region of the dent, i.e., for lower
R values, the curves are quite similar. However, the initial range of R, for

which the kn2 a values seem to change only very, very slowly with increas-
ing R. decreases substantially compared to the corresponding range for the IF

,,1a trajectories. At the upper end of the range of R. we note that the

k 2 (R;, = 1/3) a trajectories increase slightly faster than the '- ,.
k"n2I (Rcr = 1/3) a curves.

Consider next the p = 3 TM eigenvalue trajectories, k.3 (R:E, = 1/3)a, for

n = I to n = 7 shown in figure 25. Table 6(c) gives numerical values for
the eigenvalues k (R:Er = 1/3) a. A second indentation is now seen in
each trajectory. For n = 1, the dents appear at about one-third and two- ..
thirds of the range of R. As n increases, these dents move to higher R ,
value, with the lower-lying one washing out rather rapidly as it increases. 0
We also observe that the initial range of R, over which each trajectory dis-
plays a very slow increase with increasing R, shortens up as p increases. It .'-

(21 -a*.* ,

is also of interest to compare the trajectories for k,,, (R:.E, = 1/3) a in figure
25 with the TE trajectories for kt (R:l , = l/3)i in figure 13. Both sets
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have two indentations. Indeed, both sets are very similar in detail. Note ,

that the TM eigenvalue trajectories tend to lose the sharpness of the inden- -

tation characteristic, compared to those in the TE trajectories of figure 13. "

The final set of eigenvalue trajectories calculated from equation (36) that

we consider is the curves plotted in figure 26 for p = 4, i.e., the TM trajec-

tories k'2 (R: - r = 1/3)a for n = I to n = 6. Numerical values for these

eigenvalues are in table 6(d). Each eigenvalue trajectory now has three in-
dentations, each successively shifted upward in R in quarterly intervals in

R. Just as we saw for the lower values of the index p, the distinctness of
these indentations in the trajectories fades out as it increases, with the
lower ones fading faster for a given value of n. Again we observe that the N.

initial slow increase with R for the early range of R has decreased as we
increase p. We further see that increasing the index p results in predictable .

121(%changes in the k. 4  trajectories. Finally, we can compare the

k( (R:., = 1/3 )a trajectories of figure 26 with the TE k,,(R,, = 113)a
trajectories of figure 14. Clearly they look very much alike. Notice that
the TE trajectories are shifted up in ka relative to the TM trakjectories.

k (2 1a / k( 21( ) caa

0.9 -

12 8 k'9'2"

1 2)a 8o1828 -. ,,-,

0.6
CONDUCTING SPHERE OF RADIUS a ,% %. '

a CAVITY DIELECTRIC C1  .

E2 b0.4

0.4 -- "-CONCENTRIC DIELECTRIC SPHERE " .
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2DIELECTRIC CONSTANT E2  113f1

01

0

0L L I JtI l I
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THE TM EIGENVALUES 021(R ET)-;. -

Figure 24. I'M eigenvalues k ((R:E, 1/3) a for the spherical cavity of radius a filled wvith dielectric E, inter-
nally loaded with a concentric dielectric sphere of radius b and strength E, =113
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Further increasing the index %kill add additional indentations to the tratjec-

tories. Otherwise, the trends already discerned will merely continue to -.

manifest themselves. This will he the case if the dielectric sstem is the

same. Changing the relative dielectric strengths with i" < I may intriduce

some new variations in the cigenvalue trajectories. Since we have not in-

vestigated this aspect of the eigenvalue problem for the generic system

studies, we shall not go any further into this.
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5. Summary and Discussion

5.1 General Summary
We have examined a very large number of eigenvalues calculated from
equations (32) and (36). We shall no" summarize briefly the general
characteristics we have found for these eigenvalues. First, for Er > I. all
the eigenvalue trajectories are monotonically decreasing as R in-
creases---i.e., as the inner load sphere increases in size. On the other hand.
for ielative dielectric strength T < 1. the eigenvalue trajectories increase
monotonically as the inner sphere grows. Increasing the index p by unitv
adds a knee to the TE as well as TM trajectories for Er > I. Although fortt
large cr the TM trajectories do not always show this knee, it is present for

small enough n. For cr < 1. an identation is added instead.

Note that the knee and the indentation shift the trajectory toward lower ka
values for TE and TM eigenvalues, but preserve the monotonicity of the
trajectory. 1,'

We have seen that regardless of the size of the internal sphere loading the
dielectric-filled spherical cavity, and for the chosen values of the dielectric
strengths of the load sphere and the medium filling the cavity, the lowest-
lying mode, or fundamental mode, of the system will be the TM eigen-
value k'" (R.C) a.

Some quite remarkable behavior is manifested by the eigenvalues as the
size of the inner dielectric sphere loading the cavity varies. We observed
short and long ranges in the size of the inner dielectric sphere for which
the eigenvalue exhibits virtually no significant change at all, as well as
such ranges of R over which the eigenvalue changed at a very rapid rate.
For many of the higher order eigenvalues several such regions of behavior

have been seen following one after another. This is an unanticipated
characteristic for the cavity system.
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It is of interest to compare the rich variety of behavior seen for the eigen-
values of the dielectric loaded cavity with the homogeneously filled con-
centric conducting cavity eigenvalues I 11. Clearly for small values of R.

as is to be expected, the two different cavity systems show the same kind

of behavior. Except for lower order TM eigenvalues k'j1 a with cr > 1, the

eigenvalues for the two cavity systems are markedly different in their de-

pendence on R. the size of the inner interface radius.

Up to this point, we have constrained all our considerations to individual

families of eigenvalue traiectories for the different c, values; i.e., we have

fixed the index p and examined the set of curves for various ranges of the
index n. One very clear feature of these sets is that the curves in each fam-
ily of trajectories do not intersect. Unfortunately. this does not yet give a

complete enough picture of the eigenvalue trajectory characteristics. We
shall now proceed to consider the features of the eigenvalues and their
variations as R and Er change by superimposing, for each given cs., first all

the TE and then all the TM eigenvalues.

5.2 Overview of the TE and TM Eigenvalues for Er = 3.00

We have redrawn in figure 27 a superposition of the previously given 17

TE eigenvalue trajectories for the inner sphere of dielectric constant C2

3c. It now is immediately evident that many of the trajectories do inter-
sect one another. It is very important to emphasize that each point of inter-
section of any two eigenvalue trajectories represents a degenerate pair of
eigenvalues. And this degeneracy occurs for the given values of Er at spe-
cific sizes, R, of the internal load sphere. Figure 27 shows explicitly only
TE-TE intersections.

Let us begin a systematic examination of the patterns associated with the
intersection points of the eigenvalue trajectories for the k', (RE,= 3)a.
We first note that for Er = 3, k l, a and k(1 a are not degenerate with any
other TE eigenvalues. However, k a and kil' a approach each other at the

single knee of k( a, and the bottom of the second slow decrease with ris-
ing R in k()( with increasing R. In fact, we observe this as a general pat-

b(1) bill

tern with k', ) a lying close to k,-.2 a in the corresponding region. As n in-
creases, this separation decreases. Thus, at i = 5 the two trajectories al-

most intersect one another. Although it is not explicitly shown for n > 5, a ":--

pair of intersections will indeed occur in this corresponding region of R
and. as n increases, the pair of intersections will move apart. This same
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fo th -aisk,), a and k.,,,., a starting, for Er 3, with n =2 and for alp t,
similar characteristic also occurs for tht trajectories of k" n d " aa

the second knee and the region of R corresponding to the third slow ,,
decrease as R increases. This will be true in general for the pairs of trajec-

tories k"', a and k1 ) a for it > 2. Clearly for the higher order trajectories

"- -- '- ~ -i-i' n-le pr .w wj~~ V W lV -- -" •-' .v

this pattern of behavior will he repeated at larger R values corresponding
to higher lying knees on kR,, a and higher lying, slowly varying regions of

b(II)

Next consider the eigenvalue trajectory pair of k and k I at

to see in figure 27 that they are degenerate at two quite distinct rdues ofw
R. Whate a re seeing is that there are two sizes for the inner dielectric

sphere at which the system has ktI , a -- k'1' a . One is at R .just under 0.6

and the other is at R just under 0.7. After a little study of figure 27, we ob-
orie that, for n > 1 , the trajectories for a and f,,te a re siiarly
degeneate at higher R values in pairs of R. Clearly these eigenvaluerpd

trajectories are degenerate at two ut distinR values.of

1s0 a CONDUCTING SPHERE OF RADIUS d 0.6

servetat.r th traje s fr a-COCENTRIC DIELECTaR silar l
deeeae thge R "ale, in par ofR"leryths ig-u
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TETE EIGENVALUES k0 IN: Y

Figure 27. A composite of the TE eigenivalues kf'2(R;c, =371 for the spherical cavity of radius a rilled -with
*dielectric E, internally loaded with a concentric dielectric sphere of radius!b and strength E, 3E1,
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It should be noted that the trajectories for k( a and k(31 a intersect at only
the two points already indicated and the trajectories have no other
degeneracies. The trajectories for k22 ad 4 a behave in the very same
manner. From this point on, the trajectories of higher order radius will
display a larger number of degeneracies. Thus the trajectory for k',' a in-
tersects that for k( a twice and that for k<l a twice. The k a trajectoryf~)

also intersects the ,A. 2 a trajectory four times. This degree of degeneracy
becomes high rather rapidly. Thus for example, the trajectory for k,. a is
degenerate with the k13I1a trajectory for six different sizes of the inner
dielectric load sphere. It should be evident that as ka exceeds about ka 8 9
for mid-range values of R. the density of TE-TE degenerate modes can be-
come rather large.

Before leaving the TE eigenvalues for Er = 3, we point out a very impor- , .,
tant feature. Although the characteristics ot the eigenvalue trajectories b6

may become quite interesting in detail for ) < R < I, the sequence of
eigenvalues at R = I is exactly the same as the sequence in which the S

eigenvalues occur at R = 0. In general there is a downward shift in the
eigenvalues as R increases from zero up to unity.

Next let us examine the twenty-one TM eigenvalue trajectories which
were expounded for Er = I in about the same detail. We first observe that f-,.

the eigenvalue trajectories k a and k a exhibit no degeneracy whatever:(21 212)(21

i a has only two degenerate values, both with k(, a. Note that k4 a also
L 2 ) ( 2 )" 

- ,

has two degenerate values, both with k(2 -a. But k 2 a also has two
degenerate values with k,,a for a total of four degeneracies (at values of R
of about 0. I, 0.4, 0.8, and 0.99). The trajectory for k( a exhibits four
degeneracies and that for k 'a also shows four sizes of internal sphere at
which degenerate eigenvalues occur. As we go to higher order indices n.p

the number of degeneracies rises rather rapidly. Thus ka has two
degeneracies with each of the trajectories fork22 a, ,13 a. and k12a for a S

total of six degenerate sets.

Now we observe that for values of ka 5 7 the density of TM-TM
degeneracies can become rather large. This holds for nearly the entire
range of R. Again we note that the sequence of TM eigenvalues at R = ( is
preserved at R = I regardless of the behavior over intermediate R values.
A general shift to lower ka values is evident for the eigenvalues as R
increases.

77""'

.- . .. . .
-%- 

./ 
- o. -,

4:



- - . --- * ..- -°

We have thus far only separately considered TE-TE and TM-TM
degeneracies. The complete picture requires taking into account TE-TM
degeneracies for Er = 3. We now proceed to consider this aspect of the

eigenvalue distribution. We will carry this out without attempting to show
a superposition of all the TE and TM eigenvalues in one figure.

Now the only eigenvalue trajectory that does not have any degeneracies is
that for the TM kl21 a. The TE eigenvalue k1 a and the TM eigenvalue
kn a are both degenerate, intersecting at about R = 0.45 and at about R

0.8. These are the only degeneracies for these eigenvalues. These two
eigenvalue trajectories are the next lowest lying ones, with k( a lying be- -

low kII a for 0 < R < 0.45 and 0.8 < R < I and interchanging their order
for the intermediate range of R. The trajectory for the TM eigenvalue k' a

is not only doubly degenerate with the TM eigenvalue k,2 a, but also inter-
sects the TE eigenvalue trajectory k2',a twice, first at about R = 0.5 and
then at about R = 0.85. The order of occurrence of these eigenvalues at R
= 0 is preserved at R = 1. In the interniediate range of R, examination of
figures 27 and 28 shows that their order changes as R increases. Inspec-
tion of figures 27 and 28 shows that once we get beyond the TM eigen- ".:
values k a and k )a and the TE eigenvalue k(','a a considerable amount

of degeneracy appears, along with shifting around in sequence of the
higher order eigenvalues. Furthermore, as ka increases into this region, .."

there appears a rapid rise in the density of the combined TE and TM eigen-
values. Careful inspection of the figures reveals a considerable regularity

in the occurrence of intersections of the set of combined trajectories. We
will not elaborate any further on this subject.

...

Having seen the considerable complexity in the set of combined TE and ".Z,

TM eigenvalue trajectories for Er = 3, we next turn to considering the
changes that result from varying the strength of the dielectric sphere load- .

ing the cavity.
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5.3 Overview of the TE and TM Eigenvalues for Er = 10.00 te w
Next we shall examine the superposition in figure 29 of the set of twenty- •

two TE eigenvalues. which we considered individually earlier. We now
assume the inner dielectric sphere to be of strength E2 = (R. In figure 29
for yr = 10, we see that only the eigenvalue trajectory khe a has no intersec-
t(ons whany other TE trajectory. Recall that for Er 3 there were two"'
such eigenvalue trajectories. f,

The inc (Res 10)a trajectory nearly coincides with the ksm R(R;eo, = 3)a .-
trajectory for the approximate range 0 <R <0. 15. For higher R values, the
ktj'l ) (R'E, = 10)a trajectory lies lower. We also note that the eigenvalueVtrajectory for k~j'1' a at its knee lies near the cigenvalue trajectory for k( ' a-"

just beyond its first knee and where it begins its slowly decreasing region .
with increasing R. This is true in the same R region in general for the --.

eigenaluepairs,,'1 a and k'-,2 t for all n > 1. Although we have not ex-
plicitly shown it in figure 29. there will be a value of n where this set of ,i.,
trajectories intersects and continues to do so for all higher values of the in- -

dex n. Many similar pairs of trajectories exhibit this same behavior, as can ""
be seen by careful study of figure 29. We shall not go into this in any fur-
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ther detail. We shall instead examine a further complexity in the
degeneracy of the eigenvalues.

%
The TE eigenvalue trajectory k"'1. a intersects the TE trajectory for k'tia for %

two sizes of internal dielectric sphere load--at about R = 0. 15 and at about J'.p.

R = 0.25. Note that k"'a shows TE-TE degeneracy only at these two -,

values. The eigenvalue trajectory for k'; 'a has two points of degeneracy
with the trajectory for k', a-at about R = 0. 13 and R = 0.35. It also has
two points of degeneracy with the trajectory for k a--t t about R = 0.2
and R = 0.3. Thus the eigenvalues k31a and k,2,, each have TE-TE
degeneracy at four sizes of internal sphere load. Note that the points of
degeneracy for these occur only for relatively small internal spheres. The W
situation really increases in complexity very rapidly as we go to higher or-
der eigenvalues. Thus the eigenvalue k(a'ia displays six TE-TE degenerate
situations, and k22 a also shows six such degeneracies. The eigenvalue* siulonl2

k 'a shows 10 TE-TE degeneracies. Clearly the number of TE-TE degen-
eracies is growing rapidly. We note that up to about ka = 7 the density of.
TE-TE degeneracies is rather substantial, but only for R values up to about

0.5. For higher ka values, this high density of TE-TE degeneracies
spreads to much larger R values. What we are seeing is the general %

to %%%
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tendency of the eigenvalues to move to lower ka as er increases, with the
higher order trajectories moving farther. b

Figure 30 contains the superposition of all the twenty-three TM eigenvalue

trajectories, k,, (R:x, = IM),. which we examined earlier in sets of eigen-
values for fixed index p. Let us examine figure 30 for TM-TM
degeneracy. The first feature to note is that only one eigenvalue trajectory
does not intersect any other. namely, the k tj2 (R:x, = 10) a. Thus, in going
from c, = 3 to Er = 10, the number of eigenvalues that have no trajectories
with TM-TM degeneracy is reduced from two to only one. The eigen-
value curve ,,2)a, which exhibits no TM-TM degeneracy for Er = 3. now

has, for Er = 10, degeneracy with kl, (R;E, = 10)(a at about R = 0.35 and R
= 0.65. These intersections are the only internal sphere radii at which k,, a

has TM-TM degeneracy. There are four TM-TM degeneracies for k Qa.
Two are with k a near R = 0.25 and R = 0.95, corresponding, respec-
tively, to a small and a large load sphere in the interior, and two with k2 ( 22 (15
are at about R = 0.30 and R = 0.55, corresponding in both instances to
intermediate-size inner dielectric spheres. Next we see that the trajectory

of eigenvalues k a has six points of intersection, with a total of three
other TM eigenvalue trajectories. (There are two degeneracies with each_(2) ( s2) b2 .
of kia, t a, and ka i.) Also, the degeneracies occur for inner load
spheres whose sizes spread over almost the whole range of R. It is of in-
terest also that for small inner spheres up to about R 0.10, the eigen-
values k a and k2 a are very close to one another.

1_2)

Going up in order, the eigenvalue k a has a trajectory with eight intersec-
tions with other TM eigenvalue trajectories. It has two intersections withea hof (2 (2) ,(2) (,2
each of k)a, k'a, k a, and k a. Again, we can readily see that these
degeneracies correspond to inner sphere radii almost over the whole range
of R. From about R = 0.60 to about R = 0.70, k(2a and k ' a are very
nearly equal. Thus we see the feature of two ranges in R for which the
eigenvalue trajectory for k a is close to degeneracy. If we continue to
examine the higher order eigenvalue trajectories, e.g., k,, a. we find
twelve TM-TM degeneracies of a large variety of characteristics. Clearly
the TM-TM degeneracy picture is becoming considerably involved rather
rapidly now.
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Several novel features are apparent in figure 30. I)egenerc\ I, rithvt .

common for inner dielectric spheres that nearly fill the entire .,\ t I:

"" also occurs frequently for quite small inner spheres that load the

These features were already present for Er = 3. but are more etmphl'.

for the higher Er case. There are substantial ranges of R for w hik F iic

TM-TM degeneracy occurs. The density of intersections of I ti ' -7

tories becomes quite high rather soon. Many other regular feature, . Allw

discerned in figure 30 which we shall not explicitly elaborate on I inlx'

we again note that the order of the eigenvalues near R = 0 is presersed In

the limit as R goes to unity. The general property of a downvard shift of S

- - all trajectories to lower ka with increasing Er is evident at R = 0.

To get a much more thorough picture of the complicated situation that oc-

curs at Er = 10 really requires that a single figure containing all fortv-fi\'e

TE and TM eigenvalue trajectories superimposed be available for a de-

tailed analysis. Obviously such a picture would be a highly confused one.

losing clarity and accuracy of detail rather quickly. What we shall use as ,,
an alternative mechanism to acquire the more complete overview of the

whole TE and TM situation is simultaneous reference to both figure 29 for

%
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the TE eigenvalues and figure 30 for the TM eigenvalues, for E 10. Inthis manner, we can study all TE-TE, TE-TM, and TM-TM degeneracies 4I

at once.

At the outset, we note one very striking characteristic. The TM eigen-
values of k (R;E, = 10)a, which are the lowest for all R, are the only

ones not degenerate at any value of R with any other eigenvalue. This
property is not new by any means. What does arise now is the feature that
over the range of R from about R= 0.43 to about R = 0.65 the trajectory
for k)12a lies very close to the TE eigenvalue trajectory for k,l a. This
raises an interesting and important question. Namely, if we take E2 suffi-
ciently larger than E), can we eventually attain degeneracy even for what
so far has been the lowest eigenvalue, i.e., k( a? Indeed, it can be demon-
strated that for Er = 100, for example, the k11 a curve intersects the k 'a
curve at two values of R (at approximately R = 0.15 and R = 0.92). Thus,
for this case, all the modes are degenerate for some size of inner dielectric
sphere that we load the cavity with. Furthermore, when Er = 100, the
TMt mode is the dominant mode only, for small and large values of R =

b/a. In the intermediate range of R, which is bounded by the two
TEI I-TM H degeneracies, the TE 1 mode surplants the TMl as the domi- .

nant mode!

It can be further inferred that there exists a value ofEr between 10 and 100,

at which the kI a trajectory just grazes the k, 1) a trajectory, thus producing
only one value of degeneracy, and becoming the bounding Er below which
only the TM 1 mode can be the dominant mode, independent of R. If one
wishes to generalize further, "grazing" values of Er should exist for the
other degeneracy intersections as well. It would not be a difficult exercise
to solve for these "grazing" values of er, although we have not addressed .
that particular study for this report.

-.-
W'

Continuing to investigate the situation for Er = 10 with regard to ,..,.
degeneracy as we have earlier, we find that the TE eigenvalue curve ka
is degenerate only with the TM curve k2) a near R = 0.2 and near R = 0.95, O
i.e., for a small and for a quite large inner sphere. The TM eigenvalue

(2)
curve k2, a is degenerate with other modes for six distinct inner sphere
sizes. In addition to the degeneracies with the TE mode k(1a, it is twice
degenerate with the TE mode kd)a and also with the TM mode k(a. Note
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that the lower R values (about R 0.35) at which the k-,, a and k12 a occur

are nearly equal.

Proceeding to higher order, the TM eigenvalue curve k,1 a has "44

degeneracies at 10 values of R. In addition the trajectory for a nearly
coincides with several other eigenvalue trajectories for several ranges of R.
Thus once we get beyond about R = 0. 1, the density of degeneracies grows
very rapidly. Further, as we go to higher order eigenvalues, this lower

threshold in R decreases steadily. Clearly for Er = 10 we find a very dense
distribution of degeneracies and a rich variety of near degeneracy as well.
Again, the sequence of TE and TM eigenvalues near R = 0 remains in-
variant as R approaches the limit of unity, although many interesting varia-
tions in behavior occur in between these limits. Recall also that all the TE
and TM eigenvalues decrease monotonically as R increases from zero to
unity, where the inner sphere fills the entire cavity. The general
downward shift to lower ka, for all the trajectories, which is larger for
larger Er, tends to increase the density of degeneracies for R > 0.

We have now accumulated a considerable body of knowledge concerning 4",

the degeneracies in our system and the effect of increasing Fr on them.
Next we consider the corresponding situation, where we fill the cavity ,.
with a high dielectric medium and then load it in its interior with a con-
centric dielectric sphere of lower dielectric strength, i.e., Er < 1. We .:hall
examine the results only in the single case of er = 1/3.

5.4 Overview of the TE and TM Eigenvalues for Er = 1/3
We shall begin as before, by first examining the TE-TE degeneracy situa-
tion. Figure 31 contains in superposition all twenty of the TE eigenvalue
trajectories we examined as single sets of curves for fixed values of the in-
dex p. Unlike what we observed in figures 27 and 29, we now see that the
first three TE trajectories, k(j11a, k' a, and k(')a, are free of degeneracy for
all R. Furthermore, these eigenvalues are well separated from all other TE
eigenvalues for the entire range of R. The k' 1 a curve shows the first
degeneracy. Its trajectory intersects the k('1 a trajectory at about R = 0.5 S

and again at about R = 0.85. The eigenvalues of k11 a are degenerate at
four values of R--wice with k(i a and twice with kt' a. All the TE-TE
degeneracies cited thus far are well separated in R from each other. The
trajectory for the eigenvalues k" a shows six sizes of inner sphere at ..-

which degeneracy occurs. There are two values of R for each of
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k 1 a a, and k ']a at which these intersections lie. The k("a trajectory
also has six degenerate values of R, two with each of the trajectories for

Ib.(' a and k()a, and although it is not explicitly shown, two more with
k") a. The "'la trajectory intersects ,.atwc ndk1' tie71'122 at iead at ie

The k 1ca and k3 a trajectories are nearly coincident for R, ranging all the
way up to beyond R 0.3. Similar behavior exists for k(7,)a and ',42a.
There are six degenerate R values for kl) a, two with each of k(12 a, k<2) a,

and a. The next trajectory, ,' 1 a, has eight values of R at which
degeneracy occurs. We can observe that the density of degenerate pairs of
eigenvalues increases with increasing orders of n and p, but at a slower
rate than we saw happen for Er > 1. Indeed, up to ka = 6.5, very little
degeneracy can be found. Inspection of figure 31 reveals that as R in-
creases the eigenvalues are shifted, in general, to higher values. Again we
note that the sequence of eigenvalues at R = 0 is preserved at R = 1.

Next we examine the thirty-one TM eigenvalue trajectories for Er = 1/3 all

superimposed in figure 32. We begin by noting that the four lowest order pp

TM eigenvalues of k() a, k"' a, k(2'a, and k ()a are not degenerate for any
1.0 -. ,:

- , / V .. ' / ,-. I .I 1 . .. ... ¢.

, , .. - ..'

0.6, r / o' , "" 'f--!I ]r / - a. m". .
.6 , ' / 1. - /.,',/-* -< ,/ ."-* : .

-,,I ,.'.?- ,:,, .,

S0.4 A ,
/ / '/CONDUCTING SPHERE OF RADIUS a %

ICAVIT DIELECTRIC E,

02 Ab "

0.2 CONCENTRIC DIELECTRIC SPHERE
'~ '1~ :1 ADIUS RI
I ~ ~ IELECTRICONSTANT E2 1f3E

0.0

2 4 10I 12 14 16 I

d ~THE TE EIGEN VALUES I 1

% / op, (R: . . .

Figure 31. A composite (of the TE eigenvalues; k ')(R;r. = 1/3)a fo~r the spherical cavity of radius a filled with
dielectric E, internally loaded with a concentric dielectric sphere of radius to and strength E, liJ .
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values of R. Further, there is a clear separation of all these eigenvalues for

all R values, with several exceptions. One exception is for R near unity, -.

where k1)a is very close in value to k 12 T The second exception is for the
range of R up to about R = 0.15, where k a and kj2) a nearly coincide in

(2) 2
value. The TM eigenvalues k51 a and k2 a are degenerate with each other

at two R values, the lower at about R = 0.4 and the upper just under R =

0.9. The eigenvalue trajectory for k( a also shows two inner sphere sizes
where degeneracy occurs. These are at the values of R about R = 0.45 andJ. .
at about R = 0.95. Both of these intersections are with the trajectory for
the eigenvalue k(2 a. In addition to these two degenerate R values with
k~1'a. the eigenvalues k 2 a have two degenerate values of R with krT a.

These latter R values are at about R = 0.55 and R = 0.95. The values at

which the degeneracies occur for each eigenvalue are well separated in R.

12)I

The trajectory for k71 a for six values of R is degenerate with other eigen-
values. These include two trajectory intersections with k(21 a. One is at

about R = 0.05 and the other very close to R 1.0. Two more are with %

32 a--one near R = 0.4 and the second near R 0.95. The remaining two
values are the degeneracies with k 2)a already indicated. The eigenvalue

1.0 (21 ' 
2
1 1/2 ."

2 kk4 k41 44

- , -- / ..., i!
1  

: 8 jJ * o j"

0 - , .'-" V".S- , - /,/ .- . -.- / .. ,.- ..
o .0 ,, ,. 1../ 21", J. ,k 

, 
.

, 7 1 ( / [( .. ,, . / kf.:."°.. .
,?/ :, I /.Z I .j . .

0.I " ' ,,W" -
" 

. '
"  

" . " "

/ / / j
3

,I/ .. .d, ,- , .-.. ,"

(2((

0.6 - k / k2 C T S R. .
/,, / / J" 2SI"/"," "

422

a (o1 I .I -1/. -/'1th..8.2' I./i A/I.

-- 0.4 , ;a t 2 d 3 ~ A " /f 4  /. C-N.-CT.." SPHERE, OP.* =s RADIUS

(-I .. A .a VITY DIELECTRIC l'('2 :/()1
kt: 11e1 : /1

5 I I, 0.2 CONCENTRIC DIELECTRIC SPHERE
j DIELECTRIC CONSTANT E2A E

: T' : 2IINAUSk ) 21gt$ " "* ~ 0.1

2 4 6 1 10 12 14 Is Is %1

THE .To 1 ENVALUES k(21 ( *) . '
Figure 32. A composite of the TM eigenvalues k "I(Re = 1/3 ) a for the spherical cavity (if radius a folled with

* dielectric E, internally loaded with a concentric dielectric sphere of radius b' and strength F-2 1/3l.

86

I %



trajectory k2 a also has six sizes of inner sphere at which degeneracy ex-
sists with other eigenvalues. Two with k71 ai have alretdy been pointed
out. Two more occur with each of two eigenvalues from k' a and k2 a.
These are well spread out over R values from 0.5 up to 0.9. All higher or-

der eigenvalue trajectories will show increasing numbers of R values at
which degeneracy occurs with a larger number of other eigenvalues. Ex-

amination of figure 32 shows that above ka = 6 the density of degeneracies
grows rather rapidly. Furthermore. we see in figure 32 the increase in fre-
quency of occurrence of ranges of R over which many pairs of eigenvalues
nearly coincide. These ranges are quite large in many cases.

As we expec*, the order of the TM eigenvalues at R = 0 is preserved at R =

1. There is present a general upward shift in the eigenvalue trajectories for
R > 0 for Er < I. We recall that now all the eigenvalues are monotonicallyr9
increasing as R increases. Many other interesting features are present in

figure 32 showing all the TM trajectories for Er = 1/3. We shall not go any

further into this subject, but shall instead go on to consider the composite ," '.-
of all fifty-one eigenvalue trajectories for Er = 1/3.

For obvious reasons, we do not include such a superposition plot of all the
eigenvalues. We can analyze all the eigenvalue trajectories by simul-
taneously examining figures 31 and 32.

..2,
The very first observation to be made is that the TM trajectories k ia and
k2,)a are nowhere degenerate with any other eigenvalues for any R value. r
For all R, the eigenvalues of k,2a and k2l)a are well separated from all
other eigenvalues. The TE eigenvalues of k(,,, a and TM eigenvalues of

31 a, which respectively had no TE-TE and no TM-TM degeneracy, inter-

sect. There is TE-TM degeneracy of these two curves at about R = 0.55
and at about R = 0.9. Now we note that the TE curve k()a has two values
of R at which it is degenerate with the TM curve k a. These values near
R 0.5 and near R = 0.97 are the only degeneracies in 0 ) a . The TM
eigenvalue k a is also degenerate at only two values of R, near R = 0.5
and R = 0.97. Both degeneracies are with the TE eigenvalue curve k' a.
As we have already noted, k a is nearly coincident with k2a for R up to .
about R = 0.15 and again near R = I.

There are four R values at which the TM eigenvalues of k12 a are
degenerate. Two are with the TE eigenvalues of kl,', a at about R 0.35
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and also at about R = 0.7, and two are with the TM eigenvalues of k4- a at
about R = 0.4 and about R = 0.9. The k31a trajectory is degenerate at four
R values, the two already referred to with k,2 a and two others with the
eigenvalues of k 12 'a at about R = 0.5 and R = 0.98. Four degeneracies ex- %

ist for k) a. the pair already mentioned with the TM curve k,-, a and the ...,'7

two with the TE curve k,'1 a. From this point on, the higher order eigen-
values show rapid increase in degeneracy. The density of degeneracy very

quickly becomes high beyond ka = 4. In addition, many eigenvalue traiec-
tories are nearly coincident with other eigenvalue trajectories for various
ranges of R. Some ranges of R are quite extensive where this situation oc-
curs. Thus, for example, the TE curve k j,'a and the TM curve k a are
nearly coincident for values of R from zero up to about R = 0.5.

.,j _'.

All the Er = 1/3 trajectories increase monotonically with R. Finally, we

state the expected condition that the sequence in which the eigenvalues are
ordered at R = 0 remains invariant at R = I. As usual, there are many in-
teresting features present in the complete set of eigenvalue trajectories for
Er = 1/3 which we shall not go into explicitly.

5.5 Final Summary and Discussion
We have analyzed the results of solving equations (32) and (36) for the TE 0
and TM eigenvalue trajectories, for a dielectric-filled spherical cavity
loaded with an inner concentric dielectric sphere.

By choosing the inner dielectric sphere of higher strength than that of the

cavity dielectric for various values of er> I and reversing the roles of the .

dielectrics and thus obtaining Er < 1, we studied the effects of eigenvalue
trajectories. The specific values chosen for ;- were 3.0), 10.I), and 1/3.
These constitute a reasonably large range for Er" For values of Er > I all
the eigenvalues decrease monotonically as the radius of the inner sphere 0

increases. On the other hand, for F- < 1, all the eigenvalues increase -

monotonically as the radius of the inner sphere increases. In all cases of

er, although the eigenvalues display some very interesting behavior for in--..-'
ner sphere radii between R -0 and R = 1, the eigenvalue sequence of R

0 is preserved at R = 1. Comparing two cases of r > 1, we find a general '., .J

shift of the eigenvalues to lower values, for R > 0, for the higher Er case
relative to the lower F-r case. For two values of Fr < 1, the reverse situation
holds true. Varying cr induces a multitude of changes in which modes of
the system are degenerate and for which values of radius of the inner 0
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sphere the degeneracy occurs. Further varying e. affects the density of
degeneracies among the eigenvalues.

A number of practical applications of the results of this study suggest

themselves. For example, we see explic'tly for tile simple system studied ,

that the characteristics of an empty cavity and a loaded cavity can be enor- *

mously different. We shall show in subsequent reports that the interior

contents of a cavity can be sensed in the far field. The results reported on -

in this paper indicate that, if we appropriately add elements to the interior
of the cavity, identification of the cavity and its interior components can be

made very difficult. Thus we noted that adding a dielectric sphere of high

strength inside shifts many high order modes to lower values. This gives

rise to confusion in the array of resonances in the cavity rather than the
simple response of only a few resonances. We also see analytic proof of

the large number of resonances that enter into the cavity response when
the cavity contains even a very simple element. The results of this study

show that it can be very difficult to achieve and maintain EMC and EMI

hardening of systems by introducing protective devices for selected fre-

quencies because of the large number of frequencies that must be account-
ed for when even simple elements are in the interior of metallic shields.
We have further shown that the well separated lower modes of systems

can be shifted to higher frequencies if we coat the inner surface of the ex-
terior metal boundary with high dielectric strength materials. We have by
no means exhausted all possible application potentials of this study.

One final important area of application that suggests itself in this study is

that of the difficult mode conversion problem. Using the work of Rowe
and Warters 131 and that of Kindemiann 141, Doane 151 showed how the

degeneracy of the TEO[ and the TM, I circular waveguide modes could be
used to convert from the first to the second. The high degree of flexibility
we have seen in controlling degeneracy among the many modes in tile

study we reported on presents us with an opportunity to develop an addi-
tional mode conversion capability.

We conclude the discussion by pointing out that one can achieve a deeper

understanding of what we found in the study reported on here by studying
the behavior of the spatial distribution of the field components in our sys-
ten. This will be presented in a series of subsequent reports.
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